IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9482-d620264.html
   My bibliography  Save this article

Junction Management for Connected and Automated Vehicles: Intersection or Roundabout?

Author

Listed:
  • Yuanyuan Wu

    (School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore)

  • Feng Zhu

    (School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore)

Abstract

The concept of signal-free management at road junctions is tailored for Connected and Automated Vehicles (CAVs), in which the conventional signal control is replaced by various right-of-way assignment policies. First-Come-First-Served (FCFS) is the most commonly used policy. In most proposed strategies, although the traffic signals are replaced, the organization of vehicle trajectory remains the same as that of traffic lights. As a naturally signal-free strategy, roundabout has not received enough attention. A key motivation of this study is to theoretically compare the performance of signalized intersection (I-Signal), intersection using FCFS policy (I-FCFS), roundabout using the typical major-minor priority pattern (R-MM), and roundabout adopting FCFS policy (R-FCFS) under pure CAVs environment. Queueing theory is applied to derive the theoretical formulas of the capacity and average delay of each strategy. M/G/1 model is used to model the three signal-free strategies, while M/M/1/setup model is used to capture the red-and-green light switch nature of signal control. The critical safety time gaps are the main variables and are assumed to be generally distributed in the theoretical derivation. Analytically, I-Signal has the largest capacity benefiting from the ability to separate conflict points in groups, but in some cases it will have higher delay. Among the other three signal-free strategies, R-FCFS has the highest capacity and the least average control delay, indicating that the optimization of signal-free management of CAVs based on roundabout setting is worthy of further study.

Suggested Citation

  • Yuanyuan Wu & Feng Zhu, 2021. "Junction Management for Connected and Automated Vehicles: Intersection or Roundabout?," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9482-:d:620264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Chunhui & Sun, Weili & Liu, Henry X. & Yang, Xiaoguang, 2019. "Managing connected and automated vehicles at isolated intersections: From reservation- to optimization-based methods," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 416-435.
    2. Andrea Pompigna & Marco Guerrieri & Raffaele Mauro, 2020. "New Extensions and Applications of the Modified Chumanov Model for Calculating Entry Capacity of Single-Lane Roundabouts," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    3. Muhammad Azmat & Sebastian Kummer, 2020. "Potential applications of unmanned ground and aerial vehicles to mitigate challenges of transport and logistics-related critical success factors in the humanitarian supply chain," Asian Journal of Sustainability and Social Responsibility, Springer, vol. 5(1), pages 1-22, December.
    4. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    5. Morteza Taiebat & Austin L. Brown & Hannah R. Safford & Shen Qu & Ming Xu, 2019. "A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles," Papers 1901.10581, arXiv.org, revised Feb 2019.
    6. Levin, Michael W. & Boyles, Stephen D. & Patel, Rahul, 2016. "Paradoxes of reservation-based intersection controls in traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 90(C), pages 14-25.
    7. Abhishek, & Boon, Marko A.A. & Mandjes, Michel & Núñez-Queija, Rudesindo, 2019. "Congestion analysis of unsignalized intersections: The impact of impatience and Markov platooning," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1026-1035.
    8. Heidemann, Dirk & Wegmann, Helmut, 1997. "Queueing at unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 239-263, June.
    9. Wu, Ning, 2001. "A universal procedure for capacity determination at unsignalized (priority-controlled) intersections," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 593-623, July.
    10. Jiang, Yi & Li, Shuo & Shamo, Daniel E., 2006. "A platoon-based traffic signal timing algorithm for major-minor intersection types," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 543-562, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Othmane Boualam & Attila Borsos & Csaba Koren & Viktor Nagy, 2022. "Impact of Autonomous Vehicles on Roundabout Capacity," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    3. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà & Tullio Giuffrè, 2023. "A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving," Sustainability, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek & Marko A. A. Boon & Michel Mandjes, 2019. "Generalized gap acceptance models for unsignalized intersections," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 385-409, June.
    2. Wang, Hua & Meng, Qiang & Chen, Shukai & Zhang, Xiaoning, 2021. "Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections: A game-theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 322-346.
    3. Song, Yang & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2022. "Analytical approximation and calibration of roundabout capacity: A merging state transition-based modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 232-257.
    4. Abhishek, & Boon, Marko A.A. & Mandjes, Michel & Núñez-Queija, Rudesindo, 2019. "Congestion analysis of unsignalized intersections: The impact of impatience and Markov platooning," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1026-1035.
    5. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    6. Lu, Gongyuan & Shen, Zili & Liu, Xiaobo & Nie, Yu (Marco) & Xiong, Zhiqiang, 2022. "Are autonomous vehicles better off without signals at intersections? A comparative computational study," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 26-46.
    7. Qin, Yanyan & Luo, Qinzhong & Xiao, Tengfei & He, Zhengbing, 2024. "Modeling the mixed traffic capacity of minor roads at a priority intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    8. Chevallier, Estelle & Leclercq, Ludovic, 2007. "A macroscopic theory for unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1139-1150, December.
    9. Wang, Zhimian & An, Kun & Correia, Gonçalo & Ma, Wanjing, 2024. "Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    10. Luetian Sun & Rui Song, 2022. "Improving Efficiency in Congested Traffic Networks: Pareto-Improving Reservations through Agent-Based Timetabling," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    11. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    12. L D Smith & D C Sweeney & J F Campbell, 2009. "Simulation of alternative approaches to relieving congestion at locks in a river transportion system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 519-533, April.
    13. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    14. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    15. Biyao Wang & Yi Han & Siyu Wang & Di Tian & Mengjiao Cai & Ming Liu & Lujia Wang, 2022. "A Review of Intelligent Connected Vehicle Cooperative Driving Development," Mathematics, MDPI, vol. 10(19), pages 1-31, October.
    16. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    17. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    18. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    19. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    20. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9482-:d:620264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.