IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9354-d618223.html
   My bibliography  Save this article

Potential Bioinoculants for Sustainable Agriculture Prospected from Ferruginous Caves of the Iron Quadrangle/Brazil

Author

Listed:
  • Camila G. C. Lemes

    (Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil)

  • Isabella F. Cordeiro

    (Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil)

  • Camila H. de Paula

    (Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil)

  • Ana K. Silva

    (Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil)

  • Flávio F. do Carmo

    (Instituto Prístino, Belo Horizonte 30642-180, MG, Brazil)

  • Luciana H. Y. Kamino

    (Instituto Prístino, Belo Horizonte 30642-180, MG, Brazil)

  • Flávia M. S. Carvalho

    (Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal 14884-900, SP, Brazil)

  • Juan C. Caicedo

    (Faculty of Natural Sciences, Universidad de Santander, Bucaramanga 680003, Colombia)

  • Jesus A. Ferro

    (Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal 14884-900, SP, Brazil)

  • Leandro M. Moreira

    (Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
    Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil)

Abstract

Biocontrol and plant growth-promoting bacteria (PGPB) are important agricultural bioinoculants. This study aimed to prospect new potential bioinoculants for a more sustainable agriculture from ferruginous caves of the Brazilian Iron Quadrangle. Culturable bacteria, from seven caves and one canga soil sample, were evaluated for biocontroller activity of the phytopathogens Xanthomonas citri subsp. Citri — Xcc306 (citrus canker), Fusarium oxysporum — Fo (fusariosis), and Colletotrichum lindemuthianum — Cl89 (bean anthracnose). The ability of the superior candidates to solubilize inorganic phosphate, fix nitrogen, and produce hydrolytic enzymes and siderophores was then analyzed. Out of 563 isolates, 47 inhibited the growth of Xcc306 in vitro, of which 9 reduced citrus canker up to 68% when co-inoculated with the pathogen on host plants. Twenty of the 47 inhibited Fo growth directly by 51–73%, and 15 indirectly by 75–81%. These 15 inhibited Cl89 growth in vitro (up to 93% directly and 100% indirectly), fixed nitrogen, produced proteases and siderophores, showed motility ability, produced biofilm, and all but one solubilized inorganic phosphate. Therefore, 15 (2.66%) bacterial isolates, from the genera Serratia , Nissabacter , and Dickeya , act simultaneously as biocontrollers and PGPBs, and could be important candidates for future investigations in planta as an alternative to minimize the use of pesticides and chemical fertilizers through sustainable agricultural management practices.

Suggested Citation

  • Camila G. C. Lemes & Isabella F. Cordeiro & Camila H. de Paula & Ana K. Silva & Flávio F. do Carmo & Luciana H. Y. Kamino & Flávia M. S. Carvalho & Juan C. Caicedo & Jesus A. Ferro & Leandro M. Moreir, 2021. "Potential Bioinoculants for Sustainable Agriculture Prospected from Ferruginous Caves of the Iron Quadrangle/Brazil," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9354-:d:618223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew C. Pawlowski & Wenliang Wang & Kalinka Koteva & Hazel A. Barton & Andrew G. McArthur & Gerard D. Wright, 2016. "A diverse intrinsic antibiotic resistome from a cave bacterium," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    2. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    2. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    3. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    4. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    5. Vainio, Annukka & Tienhaara, Annika & Haltia, Emmi & Hyvönen, Terho & Pyysiäinen, Jarkko & Pouta, Eija, 2021. "The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers’ and citizens’ perceptions," Land Use Policy, Elsevier, vol. 107(C).
    6. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    7. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    8. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    9. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    10. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    11. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    12. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    13. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    14. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    15. Ashley E. Larsen & Steven D. Gaines & Olivier Deschênes, 2017. "Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    16. Carpentier, A. & Reboud, X., 2018. "Why farmers consider pesticides the ultimate in crop protection: economic and behavioral insights," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277528, International Association of Agricultural Economists.
    17. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    18. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    19. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    20. Hristov, Jordan & Clough, Yann & Sahlin, Ullrika & Smith, Henrik G. & Stjernman, Martin & Olsson, Ola & Sahrbacher, Amanda & Brady, Mark V., 2020. "Impacts of the EU's Common Agricultural Policy “Greening” reform on agricultural development, biodiversity, and ecosystem services," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(4), pages 716-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9354-:d:618223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.