IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8881-d610859.html
   My bibliography  Save this article

Addressing Nutrient Depletion in Tanzanian Sisal Fiber Production Using Life Cycle Assessment and Circular Economy Principles, with Bioenergy Co-Production

Author

Listed:
  • Tracey Anne Colley

    (Quantitative Sustainability Assessment (QSA) Group, Department of Technology, Sustainability Division, Management and Economics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark)

  • Judith Valerian

    (Department of Food and Resource Economics (DeFRE), School of Agriculture Economics and Business Studies (SAEBS), Sokoine University of Agriculture (SUA), P.O. Box 3007 Morogoro, Tanzania)

  • Michael Zwicky Hauschild

    (Quantitative Sustainability Assessment (QSA) Group, Department of Technology, Sustainability Division, Management and Economics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark)

  • Stig Irving Olsen

    (Quantitative Sustainability Assessment (QSA) Group, Department of Technology, Sustainability Division, Management and Economics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark)

  • Morten Birkved

    (SDU Life Cycle Engineering, Institut for Grøn Teknologi (IGT), University of Southern Denmark, DK-5230 Odense, Denmark)

Abstract

Nutrient depletion in Tanzanian sisal production has led to yield decreases over time. We use nutrient mass balances embedded within a life cycle assessment to quantify the extent of nutrient depletion for different production systems, and then used circular economy principles to identify potential cosubstrates from within the Tanzanian economy to anaerobically digest with sisal wastes. The biogas produced was then used to generate bioelectricity and the digestate residual can be used as a fertilizer to address the nutrient depletion. Life cycle assessment was used in a gate-to-gate assessment of the anaerobic digestion options with different cosubstrates. If no current beneficial use of the cosubstrate was assumed, then beef manure and marine fish processing waste were the best cosubstrates. If agricultural wastes were assumed to have a current beneficial use as fertilizer, then marine fish processing waste and human urine were the best cosubstrates. The largest reduction in environmental impacts resulted from bioelectricity replacing electricity from fossil fuels in the national electricity grid and improved onsite waste management practices. There is significant potential to revitalize Tanzanian sisal production by applying circular economy principles to sisal waste management to address soil nutrient depletion and co-produce bioenergy.

Suggested Citation

  • Tracey Anne Colley & Judith Valerian & Michael Zwicky Hauschild & Stig Irving Olsen & Morten Birkved, 2021. "Addressing Nutrient Depletion in Tanzanian Sisal Fiber Production Using Life Cycle Assessment and Circular Economy Principles, with Bioenergy Co-Production," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8881-:d:610859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    2. Nerini, Francesco Fuso & Andreoni, Antonio & Bauner, David & Howells, Mark, 2016. "Powering production. The case of the sisal fibre production in the Tanga region, Tanzania," Energy Policy, Elsevier, vol. 98(C), pages 544-556.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ha-Joon Chang & Antonio Andreoni, 2021. "Bringing Production Back into Development: An introduction," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(2), pages 165-178, April.
    2. Costa, J.C. & Oliveira, J.V. & Alves, M.M., 2016. "Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp," Renewable Energy, Elsevier, vol. 96(PB), pages 1071-1077.
    3. Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo & Søren Ugilt Larsen & Kasper Stefanek & Sven G. Sommer, 2016. "Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids," Energies, MDPI, vol. 9(5), pages 1-11, May.
    4. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.
    5. Francesco Fuso Nerini & Julia Tomei & Long Seng To & Iwona Bisaga & Priti Parikh & Mairi Black & Aiduan Borrion & Catalina Spataru & Vanesa Castán Broto & Gabrial Anandarajah & Ben Milligan & Yacob Mu, 2018. "Mapping synergies and trade-offs between energy and the Sustainable Development Goals," Nature Energy, Nature, vol. 3(1), pages 10-15, January.
    6. Momoh, O.L.Y. & Ouki, S., 2018. "Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass," Renewable Energy, Elsevier, vol. 118(C), pages 71-83.
    7. Lin, Long & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2018. "Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 151-167.
    8. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    9. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    10. Rebecca Pointer & Emmanuel Sulle & Clemente Ntauazi, 2023. "Smallholder Views on Chinese Agricultural Investments in Mozambique and Tanzania in the Context of VGGTs," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    11. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    12. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    13. Leitner, Viktoria & Lindorfer, Johannes, 2016. "Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility," Renewable Energy, Elsevier, vol. 87(P1), pages 193-202.
    14. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    15. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    16. Thorin, Eva & Lindmark, Johan & Nordlander, Eva & Odlare, Monica & Dahlquist, Erik & Kastensson, Jan & Leksell, Niklas & Pettersson, Carl-Magnus, 2012. "Performance optimization of the Växtkraft biogas production plant," Applied Energy, Elsevier, vol. 97(C), pages 503-508.
    17. Lindmark, Johan & Leksell, Niklas & Schnürer, Anna & Thorin, Eva, 2012. "Effects of mechanical pre-treatment on the biogas yield from ley crop silage," Applied Energy, Elsevier, vol. 97(C), pages 498-502.
    18. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Tedesco, Silvia & Mac Lochlainn, Dubhaltach & Olabi, Abdul Ghani, 2014. "Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production," Energy, Elsevier, vol. 76(C), pages 857-862.
    20. Muthita Tepsour & Nikannapas Usmanbaha & Thiwa Rattanaya & Rattana Jariyaboon & Sompong O-Thong & Poonsuk Prasertsan & Prawit Kongjan, 2019. "Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion," Energies, MDPI, vol. 12(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8881-:d:610859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.