IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp498-502.html
   My bibliography  Save this article

Effects of mechanical pre-treatment on the biogas yield from ley crop silage

Author

Listed:
  • Lindmark, Johan
  • Leksell, Niklas
  • Schnürer, Anna
  • Thorin, Eva

Abstract

Previous studies on substrates for biogas production have shown that different types of pre-treatments make the material more accessible for microbial degradation by breaking down the complex structure of the organic material, thereby increasing their potential for gas production. In this paper, two different mechanical pre-treatment apparatus, i.e. a Grubben deflaker (Gd) and a Krima disperser (Kd), were tested in a full scale setup to evaluate their effects on ley crop silage. The treatments were investigated with regard to their effects on particle size, methane potential, capacity and energy balance. The results after 115days of incubation in a batch assay show that methane production increased by 59% and 43% respectively after grinding with Gd and Kd. In both treatments, 90% of the ley crop was ground to particles of less than 2mm and more than 50% of the sample was reduced to particles smaller than 0.125mm. The energy balance was positive for Gd and around the break-even point for Kd. Analysis of the setup showed that Kd had almost twice the capacity of the Gd. If installed in the co-digestion biogas plant Växtkraft in Västerås, Sweden, the Gd and Kd could increase annual biogas yields by 790MWh and 585MWh respectively.

Suggested Citation

  • Lindmark, Johan & Leksell, Niklas & Schnürer, Anna & Thorin, Eva, 2012. "Effects of mechanical pre-treatment on the biogas yield from ley crop silage," Applied Energy, Elsevier, vol. 97(C), pages 498-502.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:498-502
    DOI: 10.1016/j.apenergy.2011.12.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    2. Li, Wangliang & Gupta, Rohit & Zhang, Zhikai & Cao, Lixia & Li, Yanqing & Show, Pau Loke & Gupta, Vijai Kumar & Kumar, Sunil & Lin, Kun-Yi Andrew & Varjani, Sunita & Connelly, Stephanie & You, Siming, 2023. "A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    4. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Józef Szlachta & Hubert Prask & Małgorzata Fugol & Adam Luberański, 2018. "Effect of Mechanical Pre-Treatment of the Agricultural Substrates on Yield of Biogas and Kinetics of Anaerobic Digestion," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    6. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    7. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    8. Tingting Liu & Qian Zhang & Xiaowen Kang & Jiaqi Hou & Tao Luo & Yi Zhang, 2022. "Household Food Waste to Biogas in Västerås, Sweden: A Comprehensive Case Study of Waste Valorization," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, J.C. & Oliveira, J.V. & Alves, M.M., 2016. "Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp," Renewable Energy, Elsevier, vol. 96(PB), pages 1071-1077.
    2. Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo & Søren Ugilt Larsen & Kasper Stefanek & Sven G. Sommer, 2016. "Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids," Energies, MDPI, vol. 9(5), pages 1-11, May.
    3. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.
    4. Momoh, O.L.Y. & Ouki, S., 2018. "Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass," Renewable Energy, Elsevier, vol. 118(C), pages 71-83.
    5. Lin, Long & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2018. "Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 151-167.
    6. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    7. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    8. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    9. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    10. Leitner, Viktoria & Lindorfer, Johannes, 2016. "Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility," Renewable Energy, Elsevier, vol. 87(P1), pages 193-202.
    11. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    12. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    13. Thorin, Eva & Lindmark, Johan & Nordlander, Eva & Odlare, Monica & Dahlquist, Erik & Kastensson, Jan & Leksell, Niklas & Pettersson, Carl-Magnus, 2012. "Performance optimization of the Växtkraft biogas production plant," Applied Energy, Elsevier, vol. 97(C), pages 503-508.
    14. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Tedesco, Silvia & Mac Lochlainn, Dubhaltach & Olabi, Abdul Ghani, 2014. "Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production," Energy, Elsevier, vol. 76(C), pages 857-862.
    16. Tracey Anne Colley & Judith Valerian & Michael Zwicky Hauschild & Stig Irving Olsen & Morten Birkved, 2021. "Addressing Nutrient Depletion in Tanzanian Sisal Fiber Production Using Life Cycle Assessment and Circular Economy Principles, with Bioenergy Co-Production," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    17. Muthita Tepsour & Nikannapas Usmanbaha & Thiwa Rattanaya & Rattana Jariyaboon & Sompong O-Thong & Poonsuk Prasertsan & Prawit Kongjan, 2019. "Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion," Energies, MDPI, vol. 12(22), pages 1-14, November.
    18. Wang, Feng & Xu, Fuqing & Liu, Zhe & Cui, Zhifang & Li, Yebo, 2019. "Effects of outdoor dry bale storage conditions on corn stover and the subsequent biogas production from anaerobic digestion," Renewable Energy, Elsevier, vol. 134(C), pages 276-283.
    19. Okoro- Shekwaga, Cynthia Kusin & Turnell Suruagy, Mariana Vieira & Ross, Andrew & Camargo- Valero, Miller Alonso, 2020. "Particle size, inoculum-to-substrate ratio and nutrient media effects on biomethane yield from food waste," Renewable Energy, Elsevier, vol. 151(C), pages 311-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:498-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.