IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4065-d782571.html
   My bibliography  Save this article

An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus

Author

Listed:
  • Hasim Altan

    (Department of Architecture, Faculty of Design, Arkin University of Creative Arts and Design (ARUCAD), Kyrenia 99300, Cyprus)

  • Bertug Ozarisoy

    (Graduate School, School of Architecture, Computing & Engineering, University of East London (UEL), London E16 2RD, UK)

Abstract

Passive design strategies can reduce heating and cooling demands with integration of more efficient building systems as well as the potential to integrate modular off-site construction technology and its technical systems to offset overall energy consumption. This study evaluates the energy performance of the nationally representative post-war social housing estate in the southeastern Mediterranean island of Cyprus where the weather is subtropical ( Csa ) and partly semi-arid ( Bsh ). This study employed a mixed methods research design approach which was based on a thorough field study that consisted of a questionnaire survey conducted with residents of the social housing estate in the hottest summer month of August, to explore the occupants’ thermal sensation votes (TSVs), their habitual adaptive behaviour, and home energy performance concurrently. On-site environmental monitoring was performed, and in-situ measurements of each occupied space were recorded to identify ‘neutral’ adaptive thermal comfort. The selected representative high-rise residential development was modelled using Integrated Environmental Solutions’ Virtual Environment (IES-VE) software, where extensive dynamic thermal simulations have been produced to assess existing energy performance and energy effectiveness of retrofitting strategies. The results demonstrated that a moderate–strong relationship was found between orientation and reasons for thermal discomfort ( χ 2 = 49,327, p < 0.001, Cramer’s V = 0.405). Individual levels of thermal comfort were not limited to household socio-demographic characteristics, however; environmental factors were also determinants in the development of adaptive thermal-comfort theory. Furthermore, the occupants’ TSVs indicated that in a southeastern Mediterranean climate, 28.5 °C is considered a neutral temperature, and the upper limit of the indoor-air thermal-comfort range is 31.5 °C.

Suggested Citation

  • Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4065-:d:782571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bertug Ozarisoy & Hasim Altan, 2017. "Adoption of Energy Design Strategies for Retrofitting Mass Housing Estates in Northern Cyprus," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    2. Belaïd, Fateh & Ranjbar, Zeinab & Massié, Camille, 2021. "Exploring the cost-effectiveness of energy efficiency implementation measures in the residential sector," Energy Policy, Elsevier, vol. 150(C).
    3. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    4. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    5. Abokersh, Mohamed Hany & Spiekman, Marleen & Vijlbrief, Olav & van Goch, T.A.J. & Vallès, Manel & Boer, Dieter, 2021. "A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings," Applied Energy, Elsevier, vol. 281(C).
    6. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
    7. Fokaides, Paris A. & Christoforou, Elias A. & Kalogirou, Soteris A., 2014. "Legislation driven scenarios based on recent construction advancements towards the achievement of nearly zero energy dwellings in the southern European country of Cyprus," Energy, Elsevier, vol. 66(C), pages 588-597.
    8. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    9. Ciftcioglu, Gulay Cetinkaya, 2017. "Social preference-based valuation of the links between home gardens, ecosystem services, and human well-being in Lefke Region of North Cyprus," Ecosystem Services, Elsevier, vol. 25(C), pages 227-236.
    10. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    11. Ballarini, Ilaria & Corrado, Vincenzo & Madonna, Francesco & Paduos, Simona & Ravasio, Franco, 2017. "Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology," Energy Policy, Elsevier, vol. 105(C), pages 148-160.
    12. Arbolino, Roberta & Boffardi, Raffaele & Ioppolo, Giuseppe, 2019. "The effectiveness of European energy policy on the Italian system: Regional evidences from a hierarchical cluster analysis approach," Energy Policy, Elsevier, vol. 132(C), pages 47-61.
    13. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    14. Pulhan, Afet & Yorucu, Vedat & Sinan Evcan, Nusret, 2020. "Global energy market dynamics and natural gas development in the Eastern Mediterranean region," Utilities Policy, Elsevier, vol. 64(C).
    15. Kyriakidis, Andreas & Michael, Aimilios & Illampas, Rogiros & Charmpis, Dimos C. & Ioannou, Ioannis, 2018. "Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe," Energy, Elsevier, vol. 161(C), pages 1016-1027.
    16. Luca Sbrogiò & Carlotta Bevilacqua & Gabriele De Sordi & Ivano Michelotto & Marco Sbrogiò & Antonio Toniolo & Christian Tosato, 2021. "Strategies for Structural and Energy Improvement in Mid-Rise Unreinforced Masonry Apartment Buildings. A Case Study in Mestre (Northeast Italy)," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    17. Vedat Yorucu & Rusen Keles, 2007. "The construction boom and environmental protection in Northern Cyprus as a consequence of the Annan Plan," Construction Management and Economics, Taylor & Francis Journals, vol. 25(1), pages 77-86.
    18. Jenkins, D.P. & Ingram, V. & Simpson, S.A. & Patidar, S., 2013. "Methods for assessing domestic overheating for future building regulation compliance," Energy Policy, Elsevier, vol. 56(C), pages 684-692.
    19. Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
    20. Michele Roccotelli & Alessandro Rinaldi & Maria Pia Fanti & Francesco Iannone, 2020. "Building Energy Management for Passive Cooling Based on Stochastic Occupants Behavior Evaluation," Energies, MDPI, vol. 14(1), pages 1-24, December.
    21. Cristino, T.M. & Lotufo, F.A. & Delinchant, B. & Wurtz, F. & Faria Neto, A., 2021. "A comprehensive review of obstacles and drivers to building energy-saving technologies and their association with research themes, types of buildings, and geographic regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    22. Rajat Gupta & Matt Gregg, 2020. "Assessing the Magnitude and Likely Causes of Summertime Overheating in Modern Flats in UK," Energies, MDPI, vol. 13(19), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Constantinos Vassiliades & Christos Minterides & Olga-Eleni Astara & Giovanni Barone & Ioannis Vardopoulos, 2023. "Socio-Economic Barriers to Adopting Energy-Saving Bioclimatic Strategies in a Mediterranean Sustainable Real Estate Setting: A Quantitative Analysis of Resident Perspectives," Energies, MDPI, vol. 16(24), pages 1-18, December.
    2. Garusinghe Dewa Ayesha Udari Garusinghe & Balasooriya Arachchige Kanchana Shiromi Perera & Umesha Sasanthi Weerapperuma, 2023. "Integrating Circular Economy Principles in Modular Construction to Enhance Sustainability," Sustainability, MDPI, vol. 15(15), pages 1-25, July.
    3. Ibrahim Soyler & Ercan Izgi, 2022. "Electricity Demand Forecasting of Hospital Buildings in Istanbul," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    4. Margherita Mastellone & Silvia Ruggiero & Dimitra Papadaki & Nikolaos Barmparesos & Anastasia Fotopoulou & Annarita Ferrante & Margarita Niki Assimakopoulos, 2022. "Energy, Environmental Impact and Indoor Environmental Quality of Add-Ons in Buildings," Sustainability, MDPI, vol. 14(13), pages 1-29, June.
    5. Atthakorn Thongtha & Peeranat Laphom & Jiraphorn Mahawan, 2023. "Investigation of the Efficacy of Horizontal Hollow Light Tubes for Energy Conservation in Illuminating Buildings," Energies, MDPI, vol. 16(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    2. Ozarisoy, Bertug, 2018. "An investigation of urban process and mass housing estates development through topographical formations in urban peripheries: A case study of Famagusta, Cyprus," Land Use Policy, Elsevier, vol. 79(C), pages 481-495.
    3. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    4. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    5. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    6. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    7. Severinsen, A. & Myrland, Ø., 2022. "Statistical learning to estimate energy savings from retrofitting in the Norwegian food retail market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2023. "A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 348(C).
    9. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Li, Sihui & Peng, Jinqing & Wang, Meng & Wang, Kai & Li, Houpei & Lu, Chujie, 2024. "Approaching nearly zero energy of PV direct air conditioners by integrating building design, load flexibility and PCM," Renewable Energy, Elsevier, vol. 221(C).
    12. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Abokersh, Mohamed Hany & Spiekman, Marleen & Vijlbrief, Olav & van Goch, T.A.J. & Vallès, Manel & Boer, Dieter, 2021. "A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings," Applied Energy, Elsevier, vol. 281(C).
    14. Wu, Xianguo & Li, Xinyi & Qin, Yawei & Xu, Wen & Liu, Yang, 2023. "Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions," Applied Energy, Elsevier, vol. 339(C).
    15. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    17. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    18. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    19. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    20. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4065-:d:782571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.