IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v320y2023i1d10.1007_s10479-022-04907-w.html
   My bibliography  Save this article

A sequential solution heuristic for continuous facility layout problems

Author

Listed:
  • Mehmet Burak Şenol

    (Gazi University Maltepe
    Turkish Aerospace Industries (TUSAŞ))

  • Ekrem Alper Murat

    (Wayne State University)

Abstract

We propose a novel heuristic approach, sequential solution method (SSM), for the efficient solution of Continuous Facility Layout Problems (CFLPs). The proposed SSM approach is compared with exact solution methods as well as Genetic Algorithm (GA) and Simulated Annealing (SA) metaheuristic algorithms. We also improved the metaheuristic approaches based on approximating the facility coordinates with the coordinates of the Center of the Smallest Rectangle (CSR) that covers all facilities in the solution. The proposed SSM approach is a recursive heuristic based on the exact solutions of reduced layout problems. Instead of solving the original CFLP with many variables, SSM first generates subproblems (facility clusters) of smaller sizes using a clustering model and then sequentially solves layout subproblems where non-member facilities locations are constrained. Based on an experimental study, we report that the proposed SSM substantially outperforms exact approaches and meta-heuristic approaches and hence provide an alternative approach for efficiently solving large CFLP instances.

Suggested Citation

  • Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
  • Handle: RePEc:spr:annopr:v:320:y:2023:i:1:d:10.1007_s10479-022-04907-w
    DOI: 10.1007/s10479-022-04907-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04907-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04907-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, Jaydeep & Cheng, Chun Hung, 1998. "Dynamic layout algorithms: a state-of-the-art survey," Omega, Elsevier, vol. 26(4), pages 507-521, August.
    2. Pablo Pérez-Gosende & Josefa Mula & Manuel Díaz-Madroñero, 2021. "Facility layout planning. An extended literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 59(12), pages 3777-3816, June.
    3. Lipowski, Adam & Lipowska, Dorota, 2012. "Roulette-wheel selection via stochastic acceptance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2193-2196.
    4. Friedrich, Christian & Klausnitzer, Armin & Lasch, Rainer, 2018. "Integrated slicing tree approach for solving the facility layout problem with input and output locations based on contour distance," European Journal of Operational Research, Elsevier, vol. 270(3), pages 837-851.
    5. Scholz, Daniel & Petrick, Anita & Domschke, Wolfgang, 2009. "STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 166-178, August.
    6. Friedrich, C. & Klausnitzer, A. & Lasch, R., 2018. "Integrated slicing tree approach for solving the facility layout problem with input and output locations based on contour distance," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 94867, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Saif Benjaafar & Sunderesh S. Heragu & Shahrukh A. Irani, 2002. "Next Generation Factory Layouts: Research Challenges and Recent Progress," Interfaces, INFORMS, vol. 32(6), pages 58-76, December.
    8. Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
    9. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    10. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
    11. Teodor Gabriel Crainic & Guido Perboli & Roberto Tadei, 2008. "Extreme Point-Based Heuristics for Three-Dimensional Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 368-384, August.
    12. Hanif D. Sherali & Barbara M. P. Fraticelli & Russell D. Meller, 2003. "Enhanced Model Formulations for Optimal Facility Layout," Operations Research, INFORMS, vol. 51(4), pages 629-644, August.
    13. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    14. Yang, Taho & Peters, Brett A., 1998. "Flexible machine layout design for dynamic and uncertain production environments," European Journal of Operational Research, Elsevier, vol. 108(1), pages 49-64, July.
    15. Scholz, Daniel & Petrick, Anita & Domschke, Wolfgang, 2009. "STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 39430, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    2. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    3. Kulturel-Konak, Sadan, 2012. "A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays," European Journal of Operational Research, Elsevier, vol. 223(3), pages 614-625.
    4. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    5. Komarudin & Wong, Kuan Yew, 2010. "Applying Ant System for solving Unequal Area Facility Layout Problems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 730-746, May.
    6. Scholz, Daniel & Jaehn, Florian & Junker, Andreas, 2010. "Extensions to STaTS for practical applications of the facility layout problem," European Journal of Operational Research, Elsevier, vol. 204(3), pages 463-472, August.
    7. Asef-Vaziri, Ardavan & Jahandideh, Hossein & Modarres, Mohammad, 2017. "Loop-based facility layout design under flexible bay structures," International Journal of Production Economics, Elsevier, vol. 193(C), pages 713-725.
    8. Liu, Jingfa & Wang, Dawen & He, Kun & Xue, Yu, 2017. "Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1052-1063.
    9. Bozer, Yavuz A. & Wang, Chi-Tai, 2012. "A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 382-391.
    10. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    11. Xie, Yue & Zhou, Shenghan & Xiao, Yiyong & Kulturel-Konak, Sadan & Konak, Abdullah, 2018. "A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics," European Journal of Operational Research, Elsevier, vol. 265(1), pages 26-38.
    12. McKendall Jr., Alan R. & Hakobyan, Artak, 2010. "Heuristics for the dynamic facility layout problem with unequal-area departments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 171-182, February.
    13. Dunker, Thomas & Radons, Gunter & Westkamper, Engelbert, 2005. "Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 55-69, August.
    14. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    15. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    16. Mantovani, Serena & Morganti, Gianluca & Umang, Nitish & Crainic, Teodor Gabriel & Frejinger, Emma & Larsen, Eric, 2018. "The load planning problem for double-stack intermodal trains," European Journal of Operational Research, Elsevier, vol. 267(1), pages 107-119.
    17. Balakrishnan, Jaydeep & Cheng, Chun Hung, 2007. "Multi-period planning and uncertainty issues in cellular manufacturing: A review and future directions," European Journal of Operational Research, Elsevier, vol. 177(1), pages 281-309, February.
    18. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    19. Paes, Frederico Galaxe & Pessoa, Artur Alves & Vidal, Thibaut, 2017. "A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 742-756.
    20. Pourvaziri, Hani & Pierreval, Henri & Marian, Helene, 2021. "Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution," European Journal of Operational Research, Elsevier, vol. 290(2), pages 499-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:320:y:2023:i:1:d:10.1007_s10479-022-04907-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.