Construction of Differentiated Periodic Freight Train Paths in Dense Mixed Traffic
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gabrio Caimi & Marco Laumanns & Kaspar Schüpbach & Stefan Wörner & Martin Fuchsberger, 2011. "The periodic service intention as a conceptual framework for generating timetables with partial periodicity," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(4), pages 323-339, March.
- Cacchiani, Valentina & Caprara, Alberto & Toth, Paolo, 2010. "Scheduling extra freight trains on railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 215-231, February.
- Svetla Stoilova & Nolberto Munier & Martin Kendra & Tomáš Skrúcaný, 2020. "Multi-Criteria Evaluation of Railway Network Performance in Countries of the TEN-T Orient–East Med Corridor," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wennan Song & Di Liu & Wenyu Rong, 2022. "Optimization of Passenger-like Container Train Running Plan Considering Empty Container Dispatch," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
- Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
- Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
- Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
- Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
- Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
- Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
- Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
- Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
- Harrod, Steven & Schlechte, Thomas, 2013. "A direct comparison of physical block occupancy versus timed block occupancy in train timetabling formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 50-66.
- Sairong Peng & Xin Yang & Hongwei Wang & Hairong Dong & Bin Ning & Haichuan Tang & Zhipeng Ying & Ruijun Tang, 2019. "Dispatching High-Speed Rail Trains via Utilizing the Reverse Direction Track: Adaptive Rescheduling Strategies and Application," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
- Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
- Oddvar Kloster & Bjørnar Luteberget & Carlo Mannino & Giorgio Sartor, 2023. "An Optimization-Based Decision Support Tool for Incremental Train Timetabling," SN Operations Research Forum, Springer, vol. 4(3), pages 1-20, September.
- Masoud Yaghini & Mohammadreza Sarmadi & Nariman Nikoo & Mohsen Momeni, 2014. "Capacity Consumption Analysis Using Heuristic Solution Method for Under Construction Railway Routes," Networks and Spatial Economics, Springer, vol. 14(3), pages 317-333, December.
- Talebian, Ahmadreza & Zou, Bo, 2015. "Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the US," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 114-140.
- Bešinović, Nikola & Goverde, Rob M.P. & Quaglietta, Egidio & Roberti, Roberto, 2016. "An integrated micro–macro approach to robust railway timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 14-32.
- Bouraima, Mouhamed Bayane & Qiu, Yanjun & Stević, Željko & Simić, Vladimir, 2023. "Assessment of alternative railway systems for sustainable transportation using an integrated IRN SWARA and IRN CoCoSo model," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
- Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
- Steven Harrod, 2011. "Modeling Network Transition Constraints with Hypergraphs," Transportation Science, INFORMS, vol. 45(1), pages 81-97, February.
- Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
More about this item
Keywords
periodic freight train path (PFTP); differentiation; train path symmetry; active overtaking; power-to-mass ratio (PMR); Integrated Periodic Timetable (IPT); sustainable transportation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8330-:d:601588. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.