IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i3d10.1007_s43069-023-00243-2.html
   My bibliography  Save this article

An Optimization-Based Decision Support Tool for Incremental Train Timetabling

Author

Listed:
  • Oddvar Kloster

    (SINTEF)

  • Bjørnar Luteberget

    (SINTEF)

  • Carlo Mannino

    (SINTEF
    University of Oslo)

  • Giorgio Sartor

    (SINTEF)

Abstract

We consider the typical workflow of a route planner in the context of short-term train timetabling, that is, the incremental process of adjusting a timetable for the next day or up to the next year. This process usually alternates between (1) making rough modifications to an existing timetable (e.g., shifting the departure of a train by half an hour) and then (2) making small adjustments to regain feasibility (e.g., reduce or increase the dwell time of some trains in some stations). The most time-consuming element of this process is related to the second step, that is to manually eliminate all conflicts that may arise after a timetable has been modified. In this work, we propose a mixed-integer programming model tailored to solve precisely this problem, that is to find a conflict-free timetable that is as close as possible to a given one. Previous related work mostly focused on creating complex models to produce “optimal” timetables from scratch, which ultimately resulted in little to no practical applications. By using a simpler model, and by trusting route planners in steering the process towards a timetable with the desired qualities, we can get closer to handle real-life instances. The model has been integrated in a user interface that was tested and validated by Norwegian route planners to plan the yearly timetable of a busy railway line in Norway.

Suggested Citation

  • Oddvar Kloster & Bjørnar Luteberget & Carlo Mannino & Giorgio Sartor, 2023. "An Optimization-Based Decision Support Tool for Incremental Train Timetabling," SN Operations Research Forum, Springer, vol. 4(3), pages 1-20, September.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:3:d:10.1007_s43069-023-00243-2
    DOI: 10.1007/s43069-023-00243-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00243-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00243-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leutwiler, Florin & Corman, Francesco, 2022. "A logic-based Benders decomposition for microscopic railway timetable planning," European Journal of Operational Research, Elsevier, vol. 303(2), pages 525-540.
    2. Gabrio Caimi & Marco Laumanns & Kaspar Schüpbach & Stefan Wörner & Martin Fuchsberger, 2011. "The periodic service intention as a conceptual framework for generating timetables with partial periodicity," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(4), pages 323-339, March.
    3. Laura Galli & Sebastian Stiller, 2018. "Modern Challenges in Timetabling," International Series in Operations Research & Management Science, in: Ralf Borndörfer & Torsten Klug & Leonardo Lamorgese & Carlo Mannino & Markus Reuther & Thomas Schlec (ed.), Handbook of Optimization in the Railway Industry, chapter 0, pages 117-140, Springer.
    4. Leonardo Lamorgese & Carlo Mannino, 2019. "A Noncompact Formulation for Job-Shop Scheduling Problems in Traffic Management," Operations Research, INFORMS, vol. 67(6), pages 1586-1609, November.
    5. Valentina Cacchiani & Paolo Toth, 2018. "Robust Train Timetabling," International Series in Operations Research & Management Science, in: Ralf Borndörfer & Torsten Klug & Leonardo Lamorgese & Carlo Mannino & Markus Reuther & Thomas Schlec (ed.), Handbook of Optimization in the Railway Industry, chapter 0, pages 93-115, Springer.
    6. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    7. Lamorgese, Leonardo & Mannino, Carlo & Natvig, Erik, 2017. "An exact micro–macro approach to cyclic and non-cyclic train timetabling," Omega, Elsevier, vol. 72(C), pages 59-70.
    8. Enrique Castillo & Inmaculada Gallego & José Ureña & José Coronado, 2009. "Timetabling optimization of a single railway track line with sensitivity analysis," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-287, December.
    9. Sartor, Giorgio & Mannino, Carlo & Nygreen, Thomas & Bach, Lukas, 2023. "A MILP model for quasi-periodic strategic train timetabling," Omega, Elsevier, vol. 116(C).
    10. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    11. Leonardo Lamorgese & Carlo Mannino, 2015. "An Exact Decomposition Approach for the Real-Time Train Dispatching Problem," Operations Research, INFORMS, vol. 63(1), pages 48-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentina Cacchiani & Matthias Müller-Hannemann & Federico Perea Rojas-Marcos, 2024. "Guest Editorial to the Special Issue Public Transport Optimization: From Theory to Practice," SN Operations Research Forum, Springer, vol. 5(3), pages 1-4, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sartor, Giorgio & Mannino, Carlo & Nygreen, Thomas & Bach, Lukas, 2023. "A MILP model for quasi-periodic strategic train timetabling," Omega, Elsevier, vol. 116(C).
    2. Leonardo Lamorgese & Carlo Mannino, 2019. "A Noncompact Formulation for Job-Shop Scheduling Problems in Traffic Management," Operations Research, INFORMS, vol. 67(6), pages 1586-1609, November.
    3. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    4. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    5. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    6. Leutwiler, Florin & Corman, Francesco, 2022. "A logic-based Benders decomposition for microscopic railway timetable planning," European Journal of Operational Research, Elsevier, vol. 303(2), pages 525-540.
    7. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    8. Lamorgese, Leonardo & Mannino, Carlo & Natvig, Erik, 2017. "An exact micro–macro approach to cyclic and non-cyclic train timetabling," Omega, Elsevier, vol. 72(C), pages 59-70.
    9. Huang, Yeran & Mannino, Carlo & Yang, Lixing & Tang, Tao, 2020. "Coupling time-indexed and big-M formulations for real-time train scheduling during metro service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 38-61.
    10. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    11. Van Thielen, Sofie & Corman, Francesco & Vansteenwegen, Pieter, 2018. "Considering a dynamic impact zone for real-time railway traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 39-59.
    12. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    13. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    14. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    15. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    16. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    17. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    18. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    19. Pellegrini, Paola & Pesenti, Raffaele & Rodriguez, Joaquin, 2019. "Efficient train re-routing and rescheduling: Valid inequalities and reformulation of RECIFE-MILP," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 33-48.
    20. Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:3:d:10.1007_s43069-023-00243-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.