IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7415-d587320.html
   My bibliography  Save this article

Biodegradable Material for Oyster Reef Restoration: First-Year Performance and Biogeochemical Considerations in a Coastal Lagoon

Author

Listed:
  • Chelsea K. Nitsch

    (Aquatic Biogeochemistry Lab, Department of Biology, University of Central Florida, 4000 Central Florida Blvd., Bldg. 20, BIO 301, Orlando, FL 32816, USA)

  • Linda J. Walters

    (Coastal and Estuarine Ecology Lab, Department of Biology, University of Central Florida, 4000 Central Florida Blvd., Bldg. 20, BIO 301, Orlando, FL 32816, USA)

  • Joshua S. Sacks

    (School of Oceanography, University of Washington, 1503 NE Boat St., Seattle, WA 98195, USA)

  • Paul E. Sacks

    (Coastal and Estuarine Ecology Lab, Department of Biology, University of Central Florida, 4000 Central Florida Blvd., Bldg. 20, BIO 301, Orlando, FL 32816, USA)

  • Lisa G. Chambers

    (Aquatic Biogeochemistry Lab, Department of Biology, University of Central Florida, 4000 Central Florida Blvd., Bldg. 20, BIO 301, Orlando, FL 32816, USA)

Abstract

Oyster reef restoration efforts increasingly consider not only oyster recruitment, but also the recovery of ecological functions and the prevention of deploying harmful plastics. This study investigated the efficacy of a biodegradable plastic-alternative, BESE-elements ® , in supporting oyster reef restoration in east-central Florida (USA) with consideration for how this material also influences biogeochemistry. Four experiments (two laboratory, two field-based) were conducted to evaluate the ability of BESE to serve as a microbial substrate, release nutrients, support oyster recruitment and the development of sediment biogeochemical properties on restored reefs, and degrade under field conditions. The results indicated BESE is as successful as traditional plastic in supporting initial reef development. In the lab, BESE accelerated short-term (10-day) sediment respiration rates 14-fold and released dissolved organic carbon, soluble reactive phosphorus, and nitrate to the surface water (71,156, 1980, and 87% increase, respectively) relative to without BESE, but these effects did not translate into measurable changes in reef sediment nutrient pools under field conditions. BESE lost 7–12% mass in the first year, resulting in a half-life of 4.4–6.7 years. Restoration practitioners should evaluate the biogeochemical properties of biodegradable materials prior to large-scale deployment and consider the fate of the restoration effort once the material degrades.

Suggested Citation

  • Chelsea K. Nitsch & Linda J. Walters & Joshua S. Sacks & Paul E. Sacks & Lisa G. Chambers, 2021. "Biodegradable Material for Oyster Reef Restoration: First-Year Performance and Biogeochemical Considerations in a Coastal Lagoon," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7415-:d:587320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    2. Ralph J. M. Temmink & Marjolijn J. A. Christianen & Gregory S. Fivash & Christine Angelini & Christoffer Boström & Karin Didderen & Sabine M. Engel & Nicole Esteban & Jeffrey L. Gaeckle & Karine Gagno, 2020. "Mimicry of emergent traits amplifies coastal restoration success," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Deidre Herbert & Emily Astrom & Ada C. Bersoza & Audrey Batzer & Patrick McGovern & Christine Angelini & Scott Wasman & Nicole Dix & Alex Sheremet, 2018. "Mitigating Erosional Effects Induced by Boat Wakes with Living Shorelines," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunter Mathews & Mohammad J. Uddin & Craig W. Hargis & Kelly J. Smith, 2023. "First-Year Performance of the Pervious Oyster Shell Habitat (POSH) along Two Energetic Shorelines in Northeast Florida," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    2. Linda J. Walters & Annie Roddenberry & Chelsey Crandall & Jessy Wayles & Melinda Donnelly & Savanna C. Barry & Mark W. Clark & Olivia Escandell & Jennifer C. Hansen & Katie Laakkonen & Paul E. Sacks, 2022. "The Use of Non-Plastic Materials for Oyster Reef and Shoreline Restoration: Understanding What Is Needed and Where the Field Is Headed," Sustainability, MDPI, vol. 14(13), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Shamal Shasang Kumar & Owais Ali Wani & Binesh Prasad & Amena Banuve & Penaia Mua & Ami Chand Sharma & Shalendra Prasad & Abdul Raouf Malik & Salah El-Hendawy & Mohamed A. Mattar, 2024. "Effects of Mulching on Soil Properties and Yam Production in Tropical Region," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    3. Kristof Dorau & Chris Bamminger & Daniel Koch & Tim Mansfeldt, 2022. "Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany," Climatic Change, Springer, vol. 170(1), pages 1-13, January.
    4. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    6. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    7. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    8. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    9. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    10. Damien Finn & Kerrilyn Catton & Marijke Heenan & Peter M. Kopittke & Diane Ouwerkerk & Athol V. Klieve & Ram C. Dalal, 2018. "Differential Gene Expression in the Model Actinomycete Streptomyces coelicolor A3(2) Supports Nitrogen Mining Dependent on the Plant Carbon to Nitrogen Ratio," Agriculture, MDPI, vol. 8(12), pages 1-10, December.
    11. Yuxuan Li & Siyue Feng & Lin Wang & Chencen Lei & Hongbo Peng & Xinhua He & Dandan Zhou & Fangfang Li, 2024. "Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite," Sustainability, MDPI, vol. 16(13), pages 1-13, June.
    12. Stavros D Veresoglou & Barry Thornton & George Menexes & Andreas P Mamolos & Demetrios S Veresoglou, 2012. "Soil Fertilization Leads to a Decline in Between-Samples Variability of Microbial Community δ13C Profiles in a Grassland Fertilization Experiment," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    13. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    14. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    15. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    16. Jiuming Zhang & Jiahui Yuan & Yingxue Zhu & Enjun Kuang & Jiaye Han & Yanxiang Shi & Fengqin Chi & Dan Wei & Jie Liu, 2024. "Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs," Agriculture, MDPI, vol. 14(6), pages 1-11, June.
    17. Tipping, E. & Rowe, E.C. & Evans, C.D. & Mills, R.T.E. & Emmett, B.A. & Chaplow, J.S. & Hall, J.R., 2012. "N14C: A plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition," Ecological Modelling, Elsevier, vol. 247(C), pages 11-26.
    18. Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.
    19. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    20. Chin-Chiang Hsu & Heng Tsai & Wen-Shu Huang & Shiuh-Tsuen Huang, 2021. "Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan," Land, MDPI, vol. 10(5), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7415-:d:587320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.