IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i12p192-d188493.html
   My bibliography  Save this article

Differential Gene Expression in the Model Actinomycete Streptomyces coelicolor A3(2) Supports Nitrogen Mining Dependent on the Plant Carbon to Nitrogen Ratio

Author

Listed:
  • Damien Finn

    (School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
    School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA)

  • Kerrilyn Catton

    (Soil Chemistry Lab, Department of Science, Technology and Innovation, Queensland Government, Brisbane, QLD 4001, Australia)

  • Marijke Heenan

    (Soil Chemistry Lab, Department of Science, Technology and Innovation, Queensland Government, Brisbane, QLD 4001, Australia)

  • Peter M. Kopittke

    (School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia)

  • Diane Ouwerkerk

    (Rumen Ecology Unit, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD 4001, Australia
    Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia)

  • Athol V. Klieve

    (School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
    Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia)

  • Ram C. Dalal

    (School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia)

Abstract

Nitrogen mining is the process whereby microbial communities catabolise recalcitrant long-term organic matter (OM) to meet nutritional requirements that are not ensured by labile OM. Microbial degradation of recalcitrant OM impacts soil fertility and contributes to greenhouse gas emissions in agricultural systems. Here we conducted a transcriptomics study to track differential gene expression in the model soil Actinomycete Streptomyces coelicolor A3(2) during the decomposition of mung bean ( Vigna radiata L.) and wheat ( Triticum aestivum L.) residues of relatively low and high carbon-to-nitrogen (C:N) ratios (17.3 and 35.7, respectively) at 1, 7, and 14 days of incubation. A negative binomial general linear model showed that plant variety predominantly affected transcription ( p < 0.001), although time of incubation also had an effect ( p = 0.01). In the high C:N ratio treatment, the expression of cellulases, chitinase, N-acetylglucosaminidase, secreted peptidases, and mineral nitrogen (N) metabolism were increased after 24 h. The low C:N ratio treatment demonstrated preferential expression of glutamate dehydrogenase, transporters involved in glutamate uptake and glycolysis, indicating more efficient N and carbon (C) assimilation. After 14 days, the low C:N ratio treatment showed increased transcription of extracellular enzymes, glutamate dehydrogenase, and glutamate transport. These results show an important role for added plant organic N content in determining when the transcription of genes associated with N mining occurs.

Suggested Citation

  • Damien Finn & Kerrilyn Catton & Marijke Heenan & Peter M. Kopittke & Diane Ouwerkerk & Athol V. Klieve & Ram C. Dalal, 2018. "Differential Gene Expression in the Model Actinomycete Streptomyces coelicolor A3(2) Supports Nitrogen Mining Dependent on the Plant Carbon to Nitrogen Ratio," Agriculture, MDPI, vol. 8(12), pages 1-10, December.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:12:p:192-:d:188493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/12/192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/12/192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Kristof Dorau & Chris Bamminger & Daniel Koch & Tim Mansfeldt, 2022. "Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany," Climatic Change, Springer, vol. 170(1), pages 1-13, January.
    3. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    4. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    5. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    6. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    7. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    8. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    9. Stavros D Veresoglou & Barry Thornton & George Menexes & Andreas P Mamolos & Demetrios S Veresoglou, 2012. "Soil Fertilization Leads to a Decline in Between-Samples Variability of Microbial Community δ13C Profiles in a Grassland Fertilization Experiment," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    10. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    11. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    12. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    13. Tipping, E. & Rowe, E.C. & Evans, C.D. & Mills, R.T.E. & Emmett, B.A. & Chaplow, J.S. & Hall, J.R., 2012. "N14C: A plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition," Ecological Modelling, Elsevier, vol. 247(C), pages 11-26.
    14. Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.
    15. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    16. Chin-Chiang Hsu & Heng Tsai & Wen-Shu Huang & Shiuh-Tsuen Huang, 2021. "Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan," Land, MDPI, vol. 10(5), pages 1-14, April.
    17. Peyton Ginakes & Julie M. Grossman & John M. Baker & Thanwalee Sooksa-nguan, 2020. "Living Mulch Management Spatially Localizes Nutrient Cycling in Organic Corn Production," Agriculture, MDPI, vol. 10(6), pages 1-10, June.
    18. Prabhat Poudel & Jørgen Ødegaard & Siri Josefine Mo & Rebekka Kaald Andresen & Hans Andre Tandberg & Thomas Cottis & Harald Solberg & Kari Bysveen & Puspa Raj Dulal & Hesam Mousavi & Svein Øivind Solb, 2022. "Italian Ryegrass, Perennial Ryegrass, and Meadow Fescue as Undersown Cover Crops in Spring Wheat and Barley: Results from a Mixed Methods Study in Norway," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    19. Rizki Maftukhah & Katharina M. Keiblinger & Ngadisih Ngadisih & Murtiningrum Murtiningrum & Rosana M. Kral & Axel Mentler & Rebecca Hood-Nowotny, 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Organic Amendments Improve Nitrogen Fixation and Uptake in a Legume–Cassava Intercropping System," Land, MDPI, vol. 12(5), pages 1-17, May.
    20. Radoslava Kanianska & Nikola Benková & Janka Ševčíková & Matej Masný & Miriam Kizeková & Ľubica Jančová & Jianying Feng, 2022. "Fluvisols Contribution to Water Retention Hydrological Ecosystem Services in Different Floodplain Ecosystems," Land, MDPI, vol. 11(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:12:p:192-:d:188493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.