IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7152-d582345.html
   My bibliography  Save this article

Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization

Author

Listed:
  • Mike Spiliotis

    (Department of Civil Engineering, School of Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece)

  • Alvaro Sordo-Ward

    (Department of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Luis Garrote

    (Department of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

Abstract

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.

Suggested Citation

  • Mike Spiliotis & Alvaro Sordo-Ward & Luis Garrote, 2021. "Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization," Sustainability, MDPI, vol. 13(13), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7152-:d:582345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Niazkar & Seied Hosein Afzali, 2016. "Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4713-4730, October.
    2. Mike Spiliotis & Luis Mediero & Luis Garrote, 2016. "Optimization of Hedging Rules for Reservoir Operation During Droughts Based on Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5759-5778, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
    2. Mike Spiliotis & Dionissis Latinopoulos & Lampros Vasiliades & Kyriakos Rafailidis & Eleni Koutsokera & Ifigenia Kagalou, 2022. "Flexible Goal Programming for Supporting Lake Karla’s (Greece) Sustainable Operation," Sustainability, MDPI, vol. 14(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibaut Cuvelier & Pierre Archambeau & Benjamin Dewals & Quentin Louveaux, 2018. "Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1599-1614, March.
    2. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
    3. Beshavard, Mahdi & Adib, Arash & Ashrafi, Seyed Mohammad & Kisi, Ozgur, 2022. "Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    5. Mahdi Sedighkia & Asghar Abdoli, 2023. "Design of optimal environmental flow regime at downstream of multireservoir systems by a coupled SWAT-reservoir operation optimization method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 834-854, January.
    6. Ling Kang & Liwei Zhou & Song Zhang, 2017. "Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4449-4467, November.
    7. Jalal Bazargan & Hadi Norouzi, 2018. "Investigation the Effect of Using Variable Values for the Parameters of the Linear Muskingum Method Using the Particle Swarm Algorithm (PSO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4763-4777, November.
    8. Javad Jamshidi & Mojtaba Shourian, 2019. "Hedging Rules-Based Optimal Reservoir Operation Using Bat Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4525-4538, October.
    9. Luis Garrote & Alfredo Granados & Mike Spiliotis & Francisco Martin-Carrasco, 2023. "Effectiveness of Adaptive Operating Rules for Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2527-2542, May.
    10. Mohammad Ehteram & Ali Najah Ahmed & Ming Fai Chow & Sarmad Dashti Latif & Kwok-wing Chau & Kai Lun Chong & Ahmed El-Shafie, 2023. "Optimal operation of hydropower reservoirs under climate change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10627-10659, October.
    11. Inkyung Min & Nakyung Lee & Sanha Kim & Yelim Bang & Juyeon Jang & Kichul Jung & Daeryong Park, 2024. "An Improved Aggregation–Decomposition Optimization Approach for Ecological Flow Supply in Parallel Reservoir Systems," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
    12. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "One Dimensional Hydraulic Flow Routing Incorporating a Variable Grain Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4599-4620, October.
    13. Majid Niazkar, 2020. "Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7 , 34; doi:10.3," Mathematics, MDPI, vol. 8(5), pages 1-6, May.
    14. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    15. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.
    16. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 757-773, January.
    17. Reyhaneh Akbari & Masoud-Reza Hessami-Kermani & Saeed Shojaee, 2020. "Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3291-3316, August.
    18. Aryan Salvati & Alireza Moghaddam Nia & Ali Salajegheh & Parham Moradi & Yazdan Batmani & Shahabeddin Najafi & Ataollah Shirzadi & Himan Shahabi & Akbar Sheikh-Akbari & Changhyun Jun & John J. Clague, 2023. "Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2657-2690, September.
    19. Esmatullah Sangin & S. K. Mishra & Pravin R. Patil, 2024. "Analogy Between SCS-CN and Muskingum Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 153-171, January.
    20. Wanlong Yang & Jun Wang & Jueyi Sui & Fangxiu Zhang & Baosen Zhang, 2019. "A Modified Muskingum Flow Routing Model for Flood Wave Propagation during River Ice Thawing-Breakup Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4865-4878, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7152-:d:582345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.