IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i14d10.1007_s11269-018-2082-6.html
   My bibliography  Save this article

Investigation the Effect of Using Variable Values for the Parameters of the Linear Muskingum Method Using the Particle Swarm Algorithm (PSO)

Author

Listed:
  • Jalal Bazargan

    (University of Zanjan)

  • Hadi Norouzi

    (University of Zanjan)

Abstract

Flood routing is a technique to determine the flood hydrograph at a point of downstream where is of great importance and flood-induced risks can cause irreparable damages. Routing methods can be classified into two categories: hydraulic routing and hydrologic routing. Hydrologic methods are less accurate than hydraulic methods but they are widely used for engineering of rivers due to simplicity and being acceptable. Muskingum is a simple, widely used hydrologic method in the flood routing. In present study, accuracy of the linear Muskingum method has been evaluated using the Particle Swarm Optimization (PSO) algorithm in a Karun River reach bounded to the Mollasani hydrometric station and Ahwaz station upstream and downstream of the river, respectively. The results suggest that if three distinct values rather than constant values are used for X, K, ∆푡 parameters in the Muskingum method, the accuracy of computed outflow will be increased particularly in the peak section of hydrograph so that the Mean Relative Error (MRE) of the peak hydrograph section was 2.44% when constants were. However, in the case of using three different values for these parameters, the error value reached 0.89%.

Suggested Citation

  • Jalal Bazargan & Hadi Norouzi, 2018. "Investigation the Effect of Using Variable Values for the Parameters of the Linear Muskingum Method Using the Particle Swarm Algorithm (PSO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4763-4777, November.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:14:d:10.1007_s11269-018-2082-6
    DOI: 10.1007/s11269-018-2082-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2082-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2082-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Majid Niazkar & Seied Hosein Afzali, 2016. "Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4713-4730, October.
    2. Xiaohui Yuan & Xiaotao Wu & Hao Tian & Yanbin Yuan & Rana Muhammad Adnan, 2016. "Parameter Identification of Nonlinear Muskingum Model with Backtracking Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2767-2783, June.
    3. Zaw Latt, 2015. "Application of Feedforward Artificial Neural Network in Muskingum Flood Routing: a Black-Box Forecasting Approach for a Natural River System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4995-5014, November.
    4. Omid Bozorg Haddad & Farzan Hamedi & Hosein Orouji & Maryam Pazoki & Hugo Loáiciga, 2015. "A Re-Parameterized and Improved Nonlinear Muskingum Model for Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3419-3440, July.
    5. Jasem Al-Humoud & Ismail Esen, 2006. "Approximate Methods for the Estimation of Muskingum Flood Routing Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 979-990, December.
    6. Ling Kang & Liwei Zhou & Song Zhang, 2017. "Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4449-4467, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Yan & Yicheng Gu & En Li & Yi Xu & Lingling Ni, 2024. "Runoff Prediction of Tunxi Basin under Projected Climate Changes Based on Lumped Hydrological Models with Various Model Parameter Optimization Strategies," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    2. Hadi Norouzi & Jalal Bazargan, 2022. "Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4343-4361, September.
    3. Aryan Salvati & Alireza Moghaddam Nia & Ali Salajegheh & Parham Moradi & Yazdan Batmani & Shahabeddin Najafi & Ataollah Shirzadi & Himan Shahabi & Akbar Sheikh-Akbari & Changhyun Jun & John J. Clague, 2023. "Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2657-2690, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
    2. Reyhaneh Akbari & Masoud-Reza Hessami-Kermani & Saeed Shojaee, 2020. "Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3291-3316, August.
    3. Aryan Salvati & Alireza Moghaddam Nia & Ali Salajegheh & Parham Moradi & Yazdan Batmani & Shahabeddin Najafi & Ataollah Shirzadi & Himan Shahabi & Akbar Sheikh-Akbari & Changhyun Jun & John J. Clague, 2023. "Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2657-2690, September.
    4. Dariusz Gąsiorowski & Romuald Szymkiewicz, 2020. "Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3147-3164, August.
    5. Ling Kang & Liwei Zhou & Song Zhang, 2017. "Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4449-4467, November.
    6. Xiaohui Yuan & Xiaotao Wu & Hao Tian & Yanbin Yuan & Rana Muhammad Adnan, 2016. "Parameter Identification of Nonlinear Muskingum Model with Backtracking Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2767-2783, June.
    7. Majid Niazkar & Seied Hosein Afzali, 2016. "Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4713-4730, October.
    8. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    9. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    10. Liao, Shengli & Liu, Huan & Liu, Zhanwei & Liu, Benxi & Li, Gang & Li, Shushan, 2021. "Medium-term peak shaving operation of cascade hydropower plants considering water delay time," Renewable Energy, Elsevier, vol. 179(C), pages 406-417.
    11. Chen, Zhihuan & Yuan, Xiaohui & Yuan, Yanbin & Lei, Xiaohui & Zhang, Binqiao, 2019. "Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm," Renewable Energy, Elsevier, vol. 133(C), pages 551-565.
    12. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "One Dimensional Hydraulic Flow Routing Incorporating a Variable Grain Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4599-4620, October.
    13. Zhongbo Zhang & Xiaoyan He & Simin Geng & Shuanghu Zhang & Liuqian Ding & Guangyuan Kan & Hui Li & Xiaoming Jiang, 2018. "An Improved “Dynamic Control Operation Module” for Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 449-464, January.
    14. Majid Niazkar, 2020. "Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7 , 34; doi:10.3," Mathematics, MDPI, vol. 8(5), pages 1-6, May.
    15. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 757-773, January.
    16. Esmatullah Sangin & S. K. Mishra & Pravin R. Patil, 2024. "Analogy Between SCS-CN and Muskingum Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 153-171, January.
    17. Wanlong Yang & Jun Wang & Jueyi Sui & Fangxiu Zhang & Baosen Zhang, 2019. "A Modified Muskingum Flow Routing Model for Flood Wave Propagation during River Ice Thawing-Breakup Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4865-4878, November.
    18. Ipsita Nandi & Prashant K. Srivastava & Kavita Shah, 2017. "Floodplain Mapping through Support Vector Machine and Optical/Infrared Images from Landsat 8 OLI/TIRS Sensors: Case Study from Varanasi," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1157-1171, March.
    19. Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
    20. Nazanin Farahani & Hojat Karami & Saeed Farzin & Mohammad Ehteram & Ozgur Kisi & Ahmad Shafie, 2019. "A New Method for Flood Routing Utilizing Four-Parameter Nonlinear Muskingum and Shark Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4879-4893, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:14:d:10.1007_s11269-018-2082-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.