IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i10d10.1007_s11269-024-03846-4.html
   My bibliography  Save this article

Enhancing Flood Routing Accuracy: A Fuzzified Approach to Nonlinear Variable-Parameter Muskingum Model

Author

Listed:
  • Amirfarhad Aletaha

    (Shahid Bahonar University of Kerman)

  • Masoud-Reza Hessami-Kermani

    (Shahid Bahonar University of Kerman)

  • Reyhaneh Akbari

    (Shahid Bahonar University of Kerman)

Abstract

Variable-parameter Muskingum models emerge as a highly efficient approach among the prevalent hydrological flood routing methods, owing to their accuracy and robustness. This research introduces a novel partitioning framework aimed at refining outcomes from a nonlinear variable-parameter Muskingum model by introducing fuzzification to the adjacent sub-periods of the inflow hydrograph. The results prove the efficacy of the proposed method in enhancing the accuracy of routed outflow, aligning well with the inherent characteristics of a flooding event. Validation of the newly introduced fuzzified nonlinear variable-parameter Muskingum model was conducted using four distinct case studies from the literature, including Wilson's data, the flood events in Rivers Wye and Wyre, and Viessman and Lewis' data. The evaluation of the proposed framework's effectiveness utilized the Sum of Squared Deviations (SSQ) as the objective function of the model, along with six different supplemental metrics. The results demonstrated a meaningful increase in the accuracy of the nonlinear Muskingum model for the respective cases studied. The findings imply that the proposed partitioning framework is adaptable to the variable-parameter Muskingum models with an intensity-based partitioning technique, thereby advancing the results of this conventional flood routing method.

Suggested Citation

  • Amirfarhad Aletaha & Masoud-Reza Hessami-Kermani & Reyhaneh Akbari, 2024. "Enhancing Flood Routing Accuracy: A Fuzzified Approach to Nonlinear Variable-Parameter Muskingum Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3913-3935, August.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:10:d:10.1007_s11269-024-03846-4
    DOI: 10.1007/s11269-024-03846-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03846-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03846-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reyhaneh Akbari & Masoud-Reza Hessami-Kermani & Saeed Shojaee, 2020. "Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3291-3316, August.
    2. Majid Niazkar & Seied Hosein Afzali, 2016. "Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4713-4730, October.
    3. Ling Kang & Liwei Zhou & Song Zhang, 2017. "Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4449-4467, November.
    4. Mike Spiliotis & Alvaro Sordo-Ward & Luis Garrote, 2021. "Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization," Sustainability, MDPI, vol. 13(13), pages 1-26, June.
    5. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
    2. Jalal Bazargan & Hadi Norouzi, 2018. "Investigation the Effect of Using Variable Values for the Parameters of the Linear Muskingum Method Using the Particle Swarm Algorithm (PSO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4763-4777, November.
    3. Reyhaneh Akbari & Masoud-Reza Hessami-Kermani & Saeed Shojaee, 2020. "Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3291-3316, August.
    4. Dariusz Gąsiorowski & Romuald Szymkiewicz, 2020. "Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3147-3164, August.
    5. Huaqing Zhao & Hao Wang & Yuxuan Zhang & Ranhang Zhao & Zhen Qi & Haodong Zhang, 2024. "Flash Flood Simulation for Hilly Reservoirs Considering Upstream Reservoirs—A Case Study of Moushan Reservoir," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
    6. Mike Spiliotis & Dionissis Latinopoulos & Lampros Vasiliades & Kyriakos Rafailidis & Eleni Koutsokera & Ifigenia Kagalou, 2022. "Flexible Goal Programming for Supporting Lake Karla’s (Greece) Sustainable Operation," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    7. Ling Kang & Liwei Zhou & Song Zhang, 2017. "Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4449-4467, November.
    8. Nazanin Farahani & Hojat Karami & Saeed Farzin & Mohammad Ehteram & Ozgur Kisi & Ahmad Shafie, 2019. "A New Method for Flood Routing Utilizing Four-Parameter Nonlinear Muskingum and Shark Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4879-4893, November.
    9. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "One Dimensional Hydraulic Flow Routing Incorporating a Variable Grain Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4599-4620, October.
    10. Majid Niazkar, 2020. "Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7 , 34; doi:10.3," Mathematics, MDPI, vol. 8(5), pages 1-6, May.
    11. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 757-773, January.
    12. Aryan Salvati & Alireza Moghaddam Nia & Ali Salajegheh & Parham Moradi & Yazdan Batmani & Shahabeddin Najafi & Ataollah Shirzadi & Himan Shahabi & Akbar Sheikh-Akbari & Changhyun Jun & John J. Clague, 2023. "Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2657-2690, September.
    13. Esmatullah Sangin & S. K. Mishra & Pravin R. Patil, 2024. "Analogy Between SCS-CN and Muskingum Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 153-171, January.
    14. Mike Spiliotis & Alvaro Sordo-Ward & Luis Garrote, 2021. "Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization," Sustainability, MDPI, vol. 13(13), pages 1-26, June.
    15. Wanlong Yang & Jun Wang & Jueyi Sui & Fangxiu Zhang & Baosen Zhang, 2019. "A Modified Muskingum Flow Routing Model for Flood Wave Propagation during River Ice Thawing-Breakup Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4865-4878, November.
    16. Chengpeng Lu & Keyan Ji & Wanjie Wang & Yong Zhang & Tema Koketso Ealotswe & Wei Qin & Jiayun Lu & Bo Liu & Longcang Shu, 2021. "Estimation of the Interaction Between Groundwater and Surface Water Based on Flow Routing Using an Improved Nonlinear Muskingum-Cunge Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2649-2666, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:10:d:10.1007_s11269-024-03846-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.