Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7 , 34; doi:10.3390/math7010034
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Majid Niazkar & Seied Hosein Afzali, 2016. "Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4713-4730, October.
- Majid Niazkar & Seied Afzali, 2015. "Optimum Design of Lined Channel Sections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1921-1932, April.
- Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 757-773, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "One Dimensional Hydraulic Flow Routing Incorporating a Variable Grain Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4599-4620, October.
- Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
- Ling Kang & Liwei Zhou & Song Zhang, 2017. "Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4449-4467, November.
- Jalal Bazargan & Hadi Norouzi, 2018. "Investigation the Effect of Using Variable Values for the Parameters of the Linear Muskingum Method Using the Particle Swarm Algorithm (PSO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4763-4777, November.
- Chia-Cheng Shiu & Chih-Chung Chung & Tzuping Chiang, 2024. "Enhancing the EPANET Hydraulic Model through Genetic Algorithm Optimization of Pipe Roughness Coefficients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 323-341, January.
- Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 757-773, January.
- Ahmed A. Lamri & Said M. Easa, 2022. "Lambert W-function Solution for Uniform Flow Depth Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2653-2663, June.
- Reyhaneh Akbari & Masoud-Reza Hessami-Kermani & Saeed Shojaee, 2020. "Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3291-3316, August.
- Aryan Salvati & Alireza Moghaddam Nia & Ali Salajegheh & Parham Moradi & Yazdan Batmani & Shahabeddin Najafi & Ataollah Shirzadi & Himan Shahabi & Akbar Sheikh-Akbari & Changhyun Jun & John J. Clague, 2023. "Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2657-2690, September.
- Esmatullah Sangin & S. K. Mishra & Pravin R. Patil, 2024. "Analogy Between SCS-CN and Muskingum Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 153-171, January.
- Mike Spiliotis & Alvaro Sordo-Ward & Luis Garrote, 2021. "Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization," Sustainability, MDPI, vol. 13(13), pages 1-26, June.
- Wanlong Yang & Jun Wang & Jueyi Sui & Fangxiu Zhang & Baosen Zhang, 2019. "A Modified Muskingum Flow Routing Model for Flood Wave Propagation during River Ice Thawing-Breakup Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4865-4878, November.
- Aly K. Salem & Yehya E. Imam & Ashraf H. Ghanem & Abdallah S. Bazaraa, 2022. "Genetic Algorithm Based Model for Optimal Selection of Open Channel Design Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5867-5896, December.
- Mohammad Bahrami Yarahmadi & Abbas Parsaie & Mahmood Shafai-Bejestan & Mostafa Heydari & Marzieh Badzanchin, 2023. "Estimation of Manning Roughness Coefficient in Alluvial Rivers with Bed Forms Using Soft Computing Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3563-3584, July.
More about this item
Keywords
resistance equation; Colebrook–White formula; friction factor; explicit equation; turbulent flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:793-:d:357826. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.