IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6921-d578017.html
   My bibliography  Save this article

Monomers, Materials and Energy from Coffee By-Products: A Review

Author

Listed:
  • Laura Sisti

    (Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy)

  • Annamaria Celli

    (Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy)

  • Grazia Totaro

    (Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy)

  • Patrizia Cinelli

    (Dipartimento di Ingegneria Civile ed Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy)

  • Francesca Signori

    (Dipartimento di Ingegneria Civile ed Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy)

  • Andrea Lazzeri

    (Dipartimento di Ingegneria Civile ed Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy)

  • Maria Bikaki

    (FHNW, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132 Muttenz, Switzerland)

  • Philippe Corvini

    (FHNW, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132 Muttenz, Switzerland)

  • Maura Ferri

    (Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy)

  • Annalisa Tassoni

    (Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy)

  • Luciano Navarini

    (Illy Caffè S.p.A. Via Flavia 110, 34147 Trieste, Italy)

Abstract

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.

Suggested Citation

  • Laura Sisti & Annamaria Celli & Grazia Totaro & Patrizia Cinelli & Francesca Signori & Andrea Lazzeri & Maria Bikaki & Philippe Corvini & Maura Ferri & Annalisa Tassoni & Luciano Navarini, 2021. "Monomers, Materials and Energy from Coffee By-Products: A Review," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6921-:d:578017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    2. Minjeong Lee & Minseok Yang & Sangki Choi & Jingyeong Shin & Chanhyuk Park & Si-Kyung Cho & Young Mo Kim, 2019. "Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process," Energies, MDPI, vol. 12(12), pages 1-13, June.
    3. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    4. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    5. Abdullah, Mudafer & Bulent Koc, A., 2013. "Oil removal from waste coffee grounds using two-phase solvent extraction enhanced with ultrasonication," Renewable Energy, Elsevier, vol. 50(C), pages 965-970.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    2. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    4. Anne Shayene Campos de Bomfim & Daniel Magalhães de Oliveira & Eric Walling & Alexandre Babin & Grégory Hersant & Céline Vaneeckhaute & Marie-Josée Dumont & Denis Rodrigue, 2022. "Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment," Waste, MDPI, vol. 1(1), pages 1-19, August.
    5. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    6. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    7. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    9. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    10. Giannakis, Nikos & Carmona-Cabello, Miguel & Makri, Aikaterini & Leiva-Candia, David & Filippi, Katiana & Argeiti, Chrysanthi & Pateraki, Chrysanthi & Dorado, M.P. & Koutinas, Apostolis & Stylianou, E, 2023. "Spent coffee grounds and orange peel residues based biorefinery for microbial oil and biodiesel conversion estimation," Renewable Energy, Elsevier, vol. 209(C), pages 382-392.
    11. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    12. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    13. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    14. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    15. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    16. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    17. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    18. Yichen Liu & James J. Leahy & Jacek Grams & Witold Kwapinski, 2019. "Hydro-Pyrolysis and Catalytic Upgrading of Biomass and Its Hydroxy Residue Fast Pyrolysis Vapors," Energies, MDPI, vol. 12(18), pages 1-18, September.
    19. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2011. "Assessing non-marginal variations with consequential LCA: Application to European energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3121-3132, August.
    20. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6921-:d:578017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.