IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2939-d557752.html
   My bibliography  Save this article

Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology

Author

Listed:
  • Tahereh Soleymani Angili

    (Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland)

  • Katarzyna Grzesik

    (Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland)

  • Anne Rödl

    (Institute of Environmental Technology and Energy Economics (IUE), Hamburg University of Technology (TUHH), Eissendorfer Str. 40, 21073 Hamburg, Germany)

  • Martin Kaltschmitt

    (Institute of Environmental Technology and Energy Economics (IUE), Hamburg University of Technology (TUHH), Eissendorfer Str. 40, 21073 Hamburg, Germany)

Abstract

So far, a lot of efforts have been put in life cycle assessments (LCA) of bioethanol production. There are many works that have assessed bioethanol production in different points of view to illustrate the environmental impacts. This study reviewed former LCA studies on bioethanol produced from various biomass resources by considering the effect of methodological components, technical pathways and feedstock provision on the result of LCA studies. The review evaluated 48 papers published 2002–2021 with a focus on studies that included a complete set of environmental impact categories. However, due to lack of harmony among studies, comparing the LCA results was challenging but the review indicated that the final results of studies are influenced by LCA methodological components, such as system boundary, functional unit, etc. Around 80% of the reviewed papers show the reduction in global warming potential, while contrary results have been found about increasing acidification, eutrophication and photochemical oxidant formation impact categories because of the feedstock provision. Regarding technical aspects, results from the review revealed that most of the studies considered the pre-treatment as a crucial step in bioconversion processes. Despite several LCA studies of bioethanol production, there is still low attention given to uncertainty analysis in the publications.

Suggested Citation

  • Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2939-:d:557752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Ma Teresa & Feijoo, Gumersindo, 2010. "Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe," Renewable Energy, Elsevier, vol. 35(5), pages 1014-1023.
    2. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    3. Wang, Lei & Littlewood, Jade & Murphy, Richard J., 2013. "Environmental sustainability of bioethanol production from wheat straw in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 715-725.
    4. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    5. Kadam, Kiran L., 2002. "Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India," Energy Policy, Elsevier, vol. 30(5), pages 371-384, April.
    6. Foteinis, Spyros & Kouloumpis, Victor & Tsoutsos, Theocharis, 2011. "Life cycle analysis for bioethanol production from sugar beet crops in Greece," Energy Policy, Elsevier, vol. 39(9), pages 4834-4841, September.
    7. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    8. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Mª Teresa & Feijoo, Gumersindo, 2009. "Environmental aspects of ethanol-based fuels from Brassica carinata: A case study of second generation ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2613-2620, December.
    9. González-García, Sara & Moreira, M. Teresa & Feijoo, Gumersindo, 2010. "Comparative environmental performance of lignocellulosic ethanol from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2077-2085, September.
    10. Botha, Tyron & von Blottnitz, Harro, 2006. "A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis," Energy Policy, Elsevier, vol. 34(17), pages 2654-2661, November.
    11. Jean Nepomuscene Ntihuga & Thomas Senn & Peter Gschwind & Reinhard Kohlus, 2013. "Estimating Energy- and Eco-Balances for Continuous Bio-Ethanol Production Using a Blenke Cascade System," Energies, MDPI, vol. 6(4), pages 1-19, April.
    12. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nestor Sanchez & David Rodríguez-Fontalvo & Bernay Cifuentes & Nelly M. Cantillo & Miguel Ángel Uribe Laverde & Martha Cobo, 2021. "Biomass Potential for Producing Power via Green Hydrogen," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Tahereh Soleymani Angili & Katarzyna Grzesik & Wojciech Jerzak, 2023. "Comparative Life Cycle Assessment of Catalytic Intermediate Pyrolysis of Rapeseed Meal," Energies, MDPI, vol. 16(4), pages 1-16, February.
    3. Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
    4. Isler-Kaya, Asli & Karaosmanoglu, Filiz, 2022. "Life cycle assessment of safflower and sugar beet molasses-based biofuels," Renewable Energy, Elsevier, vol. 201(P1), pages 1127-1138.
    5. Tahereh Soleymani Angili & Katarzyna Grzesik & Erfaneh Salimi & Maria Loizidou, 2022. "Life Cycle Analysis of Food Waste Valorization in Laboratory-Scale," Energies, MDPI, vol. 15(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    2. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    3. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    4. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    5. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    6. Forte, Annachiara & Zucaro, Amalia & Faugno, Salvatore & Basosi, Riccardo & Fierro, Angelo, 2018. "Carbon footprint and fossil energy consumption of bio-ethanol fuel production from Arundo donax L. crops on marginal lands of Southern Italy," Energy, Elsevier, vol. 150(C), pages 222-235.
    7. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    8. Singh, S.P. & Asthana, R.K. & Singh, A.P., 2007. "Prospects of sugarcane milling waste utilization for hydrogen production in India," Energy Policy, Elsevier, vol. 35(8), pages 4164-4168, August.
    9. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    10. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    11. McKechnie, Jon & Pourbafrani, Mohammad & Saville, Bradley A. & MacLean, Heather L., 2015. "Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol," Renewable Energy, Elsevier, vol. 76(C), pages 726-734.
    12. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    14. González-García, Sara & Moreira, M. Teresa & Feijoo, Gumersindo, 2010. "Comparative environmental performance of lignocellulosic ethanol from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2077-2085, September.
    15. Menten, Fabio & Chèze, Benoît & Patouillard, Laure & Bouvart, Frédérique, 2013. "A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 108-134.
    16. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    17. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Ma Teresa & Feijoo, Gumersindo, 2010. "Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe," Renewable Energy, Elsevier, vol. 35(5), pages 1014-1023.
    18. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Velásquez-Arredondo, H.I. & Ruiz-Colorado, A.A. & De Oliveira, S., 2010. "Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis," Energy, Elsevier, vol. 35(7), pages 3081-3087.
    20. Smullen, Emma & Finnan, John & Dowling, David & Mulcahy, Patricia, 2019. "The environmental performance of pretreatment technologies for the bioconversion of lignocellulosic biomass to ethanol," Renewable Energy, Elsevier, vol. 142(C), pages 527-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2939-:d:557752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.