IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6254-d567137.html
   My bibliography  Save this article

Development of a Mosque Design for a Hot, Dry Climate Based on a Holistic Bioclimatic Vision

Author

Listed:
  • Atef Ahriz

    (Department of Architecture, University of Tebessa, Constantine Road, Tebessa 12000, Algeria)

  • Abdelhakim Mesloub

    (Department of Architectural Engineering, College of Engineering, University of Hail, Hail 2240, Saudi Arabia)

  • Khaled Elkhayat

    (Department of Architectural Engineering, College of Engineering, University of Hail, Hail 2240, Saudi Arabia)

  • Mohammed A Alghaseb

    (Department of Architectural Engineering, College of Engineering, University of Hail, Hail 2240, Saudi Arabia)

  • Mohamed Hassan Abdelhafez

    (Department of Architectural Engineering, College of Engineering, University of Hail, Hail 2240, Saudi Arabia
    Department of Architectural Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Aritra Ghosh

    (Colleges of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Cornwall TR10 9FE, UK)

Abstract

Over 50% of the total energy consumed by buildings in a hot and dry climate goes toward the cooling regime during the harsh months. Non-residential buildings, especially houses of worship, need a tremendous amount of energy to create a comfortable environment for worshipers. Today, mosques are regarded as energy-hungry buildings, whereas in the past, they were designed according to sustainable vernacular architecture. This study was aimed at improving the energy performance of mosques in a hot and dry climate using bioclimatic principles and architectural elements. To achieve this aim, a process-based simulation approach was applied together with a generate and test technique on 86 scenarios based on 10 architectural elements, with various arithmetic transition rates organized in 9 successive steps. Starting from a simplified hypothetical model, the final model of the mosque design was arrived at based on a holistic bioclimatic vision using 10 architectural elements. The findings of this research were limited to a specific mosque size in a hot and dry climate, but the proposed holistic bioclimatic concept can be developed to take into account all mosque models in several harsh environments.

Suggested Citation

  • Atef Ahriz & Abdelhakim Mesloub & Khaled Elkhayat & Mohammed A Alghaseb & Mohamed Hassan Abdelhafez & Aritra Ghosh, 2021. "Development of a Mosque Design for a Hot, Dry Climate Based on a Holistic Bioclimatic Vision," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6254-:d:567137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelhakim Mesloub & Ghazy Abdullah Albaqawy & Mohd Zin Kandar, 2020. "The Optimum Performance of Building Integrated Photovoltaic (BIPV) Windows Under a Semi-Arid Climate in Algerian Office Buildings," Sustainability, MDPI, vol. 12(4), pages 1-38, February.
    2. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    3. Ahmed Ali A. Shohan & Mohamed B. Gadi, 2020. "Evaluation of Thermal and Energy Performance in Mosque Buildings for Current Situation (Simulation Study) in Mountainous Climate of Abha City," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    4. Mohamed Hssan Hassan Abdelhafez & Mabrouk Touahmia & Emad Noaime & Ghazy Abdullah Albaqawy & Khaled Elkhayat & Belkacem Achour & Mustapha Boukendakdji, 2021. "Integrating Solar Photovoltaics in Residential Buildings: Towards Zero Energy Buildings in Hail City, KSA," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    5. Younness EL Fouih & Amine Allouhi & Jamil Abdelmajid & Tarik Kousksou & Youssef Mourad, 2020. "Post Energy Audit of Two Mosques as a Case Study of Intermittent Occupancy Buildings: Toward more Sustainable Mosques," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    6. Ahmed Ali A. Shohan & Hanan Al-Khatri & Ahmed Ali Bindajam & Mohamed B. Gadi, 2021. "Solar Gain Influence on the Thermal and Energy Performance of Existing Mosque Buildings in the Hot-Arid Climate of Riyadh City," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    7. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    8. Widera, Barbara, 2021. "Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atef Ahriz & Abdelhakim Mesloub & Leila Djeffal & Badr M. Alsolami & Aritra Ghosh & Mohamed Hssan Hassan Abdelhafez, 2022. "The Use of Double-Skin Façades to Improve the Energy Consumption of High-Rise Office Buildings in a Mediterranean Climate (Csa)," Sustainability, MDPI, vol. 14(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mushk Bughio & Swati Bahale & Waqas Ahmed Mahar & Thorsten Schuetze, 2022. "Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates," Energies, MDPI, vol. 15(19), pages 1-21, September.
    2. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    3. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    4. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    5. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    7. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    8. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    9. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    10. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    11. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    12. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    13. Joseph Amoako-Attah & Ali B-Jahromi, 2016. "The Impact of Different Weather Files on London Detached Residential Building Performance—Deterministic, Uncertainty, and Sensitivity Analysis on CIBSE TM48 and CIBSE TM49 Future Weather Variables Usi," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    14. Luerssen, Christoph & Verbois, Hadrien & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2021. "Global sensitivity and uncertainty analysis of the levelised cost of storage (LCOS) for solar-PV-powered cooling," Applied Energy, Elsevier, vol. 286(C).
    15. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    16. Martorell, S. & Villamizar, M. & Martón, I. & Villanueva, J.F. & Carlos, S. & Sánchez, A.I., 2014. "Evaluation of risk impact of changes to surveillance requirements addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 153-165.
    17. Waad Bouaguel & Tagreed Alsulimani, 2022. "Understanding the Factors Influencing Consumers’ Intention toward Shifting to Solar Energy Technology for Residential Use in Saudi Arabia Using the Technology Acceptance Model," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    18. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    19. Reza Alayi & Mahdi Mohkam & Seyed Reza Seyednouri & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    20. Younhee Choi & Doosam Song & Sungmin Yoon & Junemo Koo, 2021. "Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads," Energies, MDPI, vol. 14(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6254-:d:567137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.