IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6204-d566428.html
   My bibliography  Save this article

The Potential Re-Use of Saudi Mine Tailings in Mine Backfill: A Path towards Sustainable Mining in Saudi Arabia

Author

Listed:
  • Mohammed Hefni

    (Mining Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Hussin A. M. Ahmed

    (Mining Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ebaa Shaikh Omar

    (Mining Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Maaz A. Ali

    (Mining Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

The Kingdom of Saudi Arabia covers an area of approximately 2 million km 2 and is rich in natural resources that are necessary for industrial development. The estimated mineral wealth beneath the Kingdom’s soil is approximately USD 1.33 trillion, as reported by the Ministry of Industry and Mineral Resources. The Kingdom’s vision for 2030 is to develop the mining sector to become the third pillar of the domestic economy. Therefore, exploration and mining activities are expected to accelerate over the next decade, which will lead to increased waste production. New executive regulations issued in January 2021 contain several sustainable elements related to the environment, social responsibility, and occupational health and safety. Therefore, this study aims to promote an example of sustainable mining activities in the Kingdom that could be adapted to meet the regulatory requirements. Cemented paste backfill samples of varying composition were made with waste materials from a Saudi copper mine for re-injection into underground mining cavities to minimize waste exposure to the environment. The samples were tested for unconfined compressive strength (UCS) after 7, 14, 28, 56, and 90 days of curing. Results from a statistically designed experiment technique show that the samples developed sufficient strength to be used in mine backfilling applications. Strong negative relationships were detected between the UCS and the water-to-binder ratio. There is strong potential for mine backfill technology to be applied to a wide range of Saudi Arabian mines to enhance the sustainability of the mining sector.

Suggested Citation

  • Mohammed Hefni & Hussin A. M. Ahmed & Ebaa Shaikh Omar & Maaz A. Ali, 2021. "The Potential Re-Use of Saudi Mine Tailings in Mine Backfill: A Path towards Sustainable Mining in Saudi Arabia," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6204-:d:566428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schoenberger, Erica, 2016. "Environmentally sustainable mining: The case of tailings storage facilities," Resources Policy, Elsevier, vol. 49(C), pages 119-128.
    2. Idiano D’Adamo & Gianluca Lupi, 2021. "Sustainability and Resilience after COVID-19: A Circular Premium in the Fashion Industry," Sustainability, MDPI, vol. 13(4), pages 1-5, February.
    3. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2021. "Sustainable Open Pit Mining and Technical Systems: Concept, Principles, and Indicators," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    4. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lidija Đurđevac Ignjatović & Vesna Krstić & Vlastimir Radonjanin & Violeta Jovanović & Mirjana Malešev & Dragan Ignjatović & Vanja Đurđevac, 2022. "Application of Cement Paste in Mining Works, Environmental Protection, and the Sustainable Development Goals in the Mining Industry," Sustainability, MDPI, vol. 14(13), pages 1-13, June.
    2. Ali Y. Al-Bakri & Haitham M. Ahmed & Mohammed A. Hefni, 2023. "Eco-Sustainable Recycling of Cement Kiln Dust (CKD) and Copper Tailings (CT) in the Cemented Paste Backfill," Sustainability, MDPI, vol. 15(4), pages 1-33, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Patyk & Przemysław Bodziony, 2022. "Application of the Analytical Hierarchy Process to Select the Most Appropriate Mining Equipment for the Exploitation of Secondary Deposits," Energies, MDPI, vol. 15(16), pages 1-16, August.
    2. Priom Mahmud & Sanjoy Kumar Paul & Abdullahil Azeem & Priyabrata Chowdhury, 2021. "Evaluating Supply Chain Collaboration Barriers in Small- and Medium-Sized Enterprises," Sustainability, MDPI, vol. 13(13), pages 1-28, July.
    3. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    4. Muhammad Jawad Sajid & Ernesto D. R. Santibanez Gonzalez, 2021. "The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO 2 Emissions: Evidence from Major Asia Pacific Countries," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    5. Kashan, Alireza Javanmardi & Lay, Janine & Wiewiora, Anna & Bradley, Lisa, 2022. "The innovation process in mining: Integrating insights from innovation and change management," Resources Policy, Elsevier, vol. 76(C).
    6. Milousi, Maria & Souliotis, Manolis, 2023. "A circular economy approach to residential solar thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 242-252.
    7. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    8. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    9. Sara Alonso-Muñoz & Rocío González-Sánchez & Cristina Siligardi & Fernando E. García-Muiña, 2021. "New Circular Networks in Resilient Supply Chains: An External Capital Perspective," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    10. Abderahman Rejeb & Karim Rejeb & John G. Keogh & Suhaiza Zailani, 2022. "Barriers to Blockchain Adoption in the Circular Economy: A Fuzzy Delphi and Best-Worst Approach," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    11. Gustavo Lagos & David Peters & Marcos Lima & José Joaquín Jara, 2020. "Potential copper production through 2035 in Chile," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 43-56, July.
    12. Md. Rayhan Sarker & Md. Abdul Moktadir & Ernesto D. R. Santibanez-Gonzalez, 2021. "Social Sustainability Challenges Towards Flexible Supply Chain Management: Post-COVID-19 Perspective," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 199-218, December.
    13. Daniel Zdolšek & Sabina Taškar Beloglavec, 2023. "Sustainability Reporting Ecosystem: A Once-in-a-Lifetime Overhaul during the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    14. Swikriti Khadke & Pragya Gupta & Shanmukh Rachakunta & Chandreswar Mahata & Suma Dawn & Mohit Sharma & Deepak Verma & Aniruddha Pradhan & Ambati Mounika Sai Krishna & Seeram Ramakrishna & Sabyasachi C, 2021. "Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    15. Idiano D’Adamo & Rocío González-Sánchez & Maria Sonia Medina-Salgado & Davide Settembre-Blundo, 2021. "E-Commerce Calls for Cyber-Security and Sustainability: How European Citizens Look for a Trusted Online Environment," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    16. Yıldız, Taşkın Deniz & Güner, Mehmet Oğuz & Kural, Orhan, 2024. "Effects of EU-Compliant mining waste regulation on Turkish mining sector: A review of characterization, classification, storage, management, recovery of mineral wastes," Resources Policy, Elsevier, vol. 90(C).
    17. Ojeda-Pereira, Iván & Campos-Medina, Fernando, 2021. "International trends in mining tailings publications: A descriptive bibliometric study," Resources Policy, Elsevier, vol. 74(C).
    18. António Mateus & Luís Martins, 2021. "Building a mineral-based value chain in Europe: the balance between social acceptance and secure supply," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(2), pages 239-261, July.
    19. Carlos Cacciuttolo & Edison Atencio, 2022. "Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World," IJERPH, MDPI, vol. 19(20), pages 1-41, October.
    20. Honglei Liu & Qiang Wu & Jianxin Chen & Mingjun Wang & Di Zhao & Cheng Duan, 2021. "Environmental Impacts Related to Closed Mines in Inner Mongolia," Sustainability, MDPI, vol. 13(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6204-:d:566428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.