IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5979-d891338.html
   My bibliography  Save this article

Application of the Analytical Hierarchy Process to Select the Most Appropriate Mining Equipment for the Exploitation of Secondary Deposits

Author

Listed:
  • Michał Patyk

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Przemysław Bodziony

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

A methodology is outlined for equipment selection for the extraction of secondary deposits, supported by the Multiple Criteria Decision Making (MCDM) tool based on the Analytic Hierarchy Process (AHP) method and applied to evaluate its impact on the mining system’s performance and the viability of the rock mining project. The equipment selection analysis affords us the means to explore selected options, taking technological and economic parameters into account, and opening the way for making the decision to begin or discontinue mining operations. The simulation results show how maintaining the mining site in a good condition impacts on the actual duty cycle of mining equipment, the time required to complete the hauling task and the operating costs.

Suggested Citation

  • Michał Patyk & Przemysław Bodziony, 2022. "Application of the Analytical Hierarchy Process to Select the Most Appropriate Mining Equipment for the Exploitation of Secondary Deposits," Energies, MDPI, vol. 15(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5979-:d:891338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zbigniew Krysa & Przemysław Bodziony & Michał Patyk, 2021. "Discrete Simulations in Analyzing the Effectiveness of Raw Materials Transportation during Extraction of Low-Quality Deposits," Energies, MDPI, vol. 14(18), pages 1-19, September.
    2. Michał Patyk & Przemysław Bodziony & Zbigniew Krysa, 2021. "A Multiple Criteria Decision Making Method to Weight the Sustainability Criteria of Equipment Selection for Surface Mining," Energies, MDPI, vol. 14(11), pages 1-14, May.
    3. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2021. "Sustainable Open Pit Mining and Technical Systems: Concept, Principles, and Indicators," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    4. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    5. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    6. Mudd, Gavin M., 2010. "The Environmental sustainability of mining in Australia: key mega-trends and looming constraints," Resources Policy, Elsevier, vol. 35(2), pages 98-115, June.
    7. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    8. Philip-Mark Spanidis & Christos Roumpos & Francis Pavloudakis, 2020. "A Multi-Criteria Approach for the Evaluation of Low Risk Restoration Projects in Continuous Surface Lignite Mines," Energies, MDPI, vol. 13(9), pages 1-22, May.
    9. Stenis, Jan & Hogland, William, 2011. "Optimization of mining by application of the equality principle," Resources Policy, Elsevier, vol. 36(3), pages 285-292, September.
    10. Dayo-Olupona, Oluwatobi & Genc, Bekir & Onifade, Moshood, 2020. "Technology adoption in mining: A multi-criteria method to select emerging technology in surface mines," Resources Policy, Elsevier, vol. 69(C).
    11. Jeffrey C. Cegan & Ashley M. Filion & Jeffrey M. Keisler & Igor Linkov, 2017. "Trends and applications of multi-criteria decision analysis in environmental sciences: literature review," Environment Systems and Decisions, Springer, vol. 37(2), pages 123-133, June.
    12. Jan Blachowski & Anna Buczyńska, 2020. "Spatial and Multicriteria Analysis of Dimension Stones and Crushed Rocks Quarrying in the Context of Sustainable Regional Development: Case Study of Lower Silesia (Poland)," Sustainability, MDPI, vol. 12(7), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Patyk & Przemysław Bodziony & Zbigniew Krysa, 2021. "A Multiple Criteria Decision Making Method to Weight the Sustainability Criteria of Equipment Selection for Surface Mining," Energies, MDPI, vol. 14(11), pages 1-14, May.
    2. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2022. "Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    3. Mohammed Hefni & Hussin A. M. Ahmed & Ebaa Shaikh Omar & Maaz A. Ali, 2021. "The Potential Re-Use of Saudi Mine Tailings in Mine Backfill: A Path towards Sustainable Mining in Saudi Arabia," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    4. Philip-Mark Spanidis & Christos Roumpos & Francis Pavloudakis, 2023. "Evaluation of Strategies for the Sustainable Transformation of Surface Coal Mines Using a Combined SWOT–AHP Methodology," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    5. Prin Boonkanit & Kridchai Suthiluck, 2023. "Developing a Decision-Making Support System for a Smart Construction and Demolition Waste Transition to a Circular Economy," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    6. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    7. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    8. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    9. Nina Almasifar & Tülay Özdemir Canbolat & Milad Akhavan & Roberto Alonso González-Lezcano, 2021. "Proposing a New Methodology for Monument Conservation “SCOPE MANAGEMENT” by the Use of an Analytic Hierarchy Process Project Management Institute System and the ICOMOS Burra Charter," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    10. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    11. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    12. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    13. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    14. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    15. Lim, Chulmin & Rowsell, Joe & Kim, Seongcheol, 2023. "Exploring the killer domains to create new value: A Comparative case study of Canadian and Korean telcos," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277998, International Telecommunications Society (ITS).
    16. Pauli Lappi & Markku Ollikainen, 2019. "Optimal Environmental Policy for a Mine Under Polluting Waste Rocks and Stock Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 133-158, May.
    17. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    18. Amir Noori & Hossein Bonakdari & Khosro Morovati & Bahram Gharabaghi, 2018. "The optimal dam site selection using a group decision-making method through fuzzy TOPSIS model," Environment Systems and Decisions, Springer, vol. 38(4), pages 471-488, December.
    19. Chao Liu & Qichen Liao & Wenyan Gao & Shuxian Li & Peng Jiang & Ding Li, 2024. "Intellectual Capital Evaluation Index Based on a Hybrid Multi-Criteria Decision-Making Technique," Mathematics, MDPI, vol. 12(9), pages 1-29, April.
    20. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5979-:d:891338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.