IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5623-d556688.html
   My bibliography  Save this article

Assessment of the Variability of Air Pollutant Concentrations at Industrial, Traffic and Urban Background Stations in Krakow (Poland) Using Statistical Methods

Author

Listed:
  • Robert Oleniacz

    (Department of Environmental Management and Protection, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Tomasz Gorzelnik

    (Department of Environmental Management and Protection, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

In cities with an extensive air quality monitoring (AQM) system, the results of pollutant concentration measurements obtained in this system can be used not only for current assessments of air pollution, but also for analyzes aimed at better identification of factors influencing the air quality and for tracking trends in changes taking place in this regard. This can be achieved with the use of statistical methods that allow for the assessment of the variability of measurement data observed at stations of various types and for the determination of possible interdependencies between these data. In this article, an analysis of this type was carried out for traffic, urban background and industrial AQM stations in Krakow (Southern Poland) operating in the years 2017–2018 with the use of, i.a., cluster analyzes, as well as dependent samples t -test and Wilcoxon signed-rank test, taking into account the concentrations of air pollutants such as fine particulate matter (PM 10 ), nitrogen dioxide (NO 2 ), benzene (C 6 H 6 ) and sulfur dioxide (SO 2 ). On the basis of the conducted analyzes, similarities and differences were shown between the data observed at individual types of stations, and the possibilities of using them to identify the causes of the observed changes and the effects of remedial actions to improve air quality undertaken recently and planned in the future were indicated. It was found that the air concentrations of some substances measured at these stations can be used to assess the emission abatement effects in road transport (NO 2 , PM 10 or C 6 H 6 ), residential heating (PM 10 or SO 2 ), and selective industrial plants (SO 2 , NO 2 or C 6 H 6 ).

Suggested Citation

  • Robert Oleniacz & Tomasz Gorzelnik, 2021. "Assessment of the Variability of Air Pollutant Concentrations at Industrial, Traffic and Urban Background Stations in Krakow (Poland) Using Statistical Methods," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5623-:d:556688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thunis, P. & Miranda, A. & Baldasano, J.M. & Blond, N. & Douros, J. & Graff, A. & Janssen, S. & Juda-Rezler, K. & Karvosenoja, N. & Maffeis, G. & Martilli, A. & Rasoloharimahefa, M. & Real, E. & Viaen, 2016. "Overview of current regional and local scale air quality modelling practices: Assessment and planning tools in the EU," Environmental Science & Policy, Elsevier, vol. 65(C), pages 13-21.
    2. Rafał Blazy & Jakub Błachut & Agnieszka Ciepiela & Rita Łabuz & Renata Papież, 2021. "Thermal Modernization Cost and the Potential Ecological Effect—Scenario Analysis for Thermal Modernization in Southern Poland," Energies, MDPI, vol. 14(8), pages 1-16, April.
    3. P. Thunis & Ana Isabel A A. Miranda & Jose J.M. Baldasano & Nadège N.M. Blond & John Douros & Arno Graff & Stijn Janssen & Katarzyna Juda-Rezler & Niko Karvosenoja & Giuseppe Maffeis & Alberto Martill, 2016. "Overview of current regional and local scale air quality modelling practices: Assessment and planning tools in the EU," ULB Institutional Repository 2013/284485, ULB -- Universite Libre de Bruxelles.
    4. Tomasz Jeleński & Marta Dendys & Barbara Tomaszewska & Leszek Pająk, 2020. "The Potential of RES in the Reduction of Air Pollution: The SWOT Analysis of Smart Energy Management Solutions for Krakow Functional Area (KrOF)," Energies, MDPI, vol. 13(7), pages 1-26, April.
    5. Izabela Sówka & Anna Chlebowska-Styś & Łukasz Pachurka & Wioletta Rogula-Kozłowska & Barbara Mathews, 2019. "Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    6. Gabriele Battista & Tiziano Pagliaroli & Luca Mauri & Carmine Basilicata & Roberto De Lieto Vollaro, 2016. "Assessment of the Air Pollution Level in the City of Rome (Italy)," Sustainability, MDPI, vol. 8(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuixia Yan & Lucang Wang & Qing Zhang, 2021. "Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    2. Justyna Jońca & Marcin Pawnuk & Yaroslav Bezyk & Adalbert Arsen & Izabela Sówka, 2022. "Drone-Assisted Monitoring of Atmospheric Pollution—A Comprehensive Review," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    3. Grzegorz Majewski & Bartosz Szeląg & Anita Białek & Michał Stachura & Barbara Wodecka & Ewa Anioł & Tomasz Wdowiak & Andrzej Brandyk & Wioletta Rogula-Kozłowska & Grzegorz Łagód, 2021. "Relationship between Visibility, Air Pollution Index and Annual Mortality Rate in Association with the Occurrence of Rainfall—A Probabilistic Approach," Energies, MDPI, vol. 14(24), pages 1-39, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Maranzano & Alessandro Fassò & Matteo Pelagatti & Manfred Mudelsee, 2020. "Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    2. Marco Ravina & Deborah Panepinto & Mariachiara Zanetti, 2019. "Air Quality Planning and the Minimization of Negative Externalities," Resources, MDPI, vol. 8(1), pages 1-18, January.
    3. Ajtai, Nicolae & Stefanie, Horatiu & Botezan, Camelia & Ozunu, Alexandru & Radovici, Andrei & Dumitrache, Rodica & Iriza-Burcă, Amalia & Diamandi, Andrei & Hirtl, Marcus, 2020. "Support tools for land use policies based on high resolution regional air quality modelling," Land Use Policy, Elsevier, vol. 95(C).
    4. Piotr Rusiniak & Katarzyna Wątor & Ewa Kmiecik, 2020. "Inorganic Chromium Speciation in Geothermal Water of the Podhale Trough (Southern Poland) Used for Recreational Purposes," Energies, MDPI, vol. 13(14), pages 1-18, July.
    5. Barbora Švédová & Helena Raclavská & Marek Kucbel & Jana Růžičková & Konstantin Raclavský & Miroslav Koliba & Dagmar Juchelková, 2020. "Concentration Variability of Water-Soluble Ions during the Acceptable and Exceeded Pollution in an Industrial Region," IJERPH, MDPI, vol. 17(10), pages 1-26, May.
    6. Yang, Bo & Swe, Thidar & Chen, Yixuan & Zeng, Chunyuan & Shu, Hongchun & Li, Xin & Yu, Tao & Zhang, Xiaoshun & Sun, Liming, 2021. "Energy cooperation between Myanmar and China under One Belt One Road: Current state, challenges and perspectives," Energy, Elsevier, vol. 215(PB).
    7. Nurulkamal Masseran & Muhammad Aslam Mohd Safari, 2021. "Mixed POT-BM Approach for Modeling Unhealthy Air Pollution Events," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
    8. Tomasz Mach & Wioletta Rogula-Kozłowska & Karolina Bralewska & Grzegorz Majewski & Patrycja Rogula-Kopiec & Justyna Rybak, 2021. "Impact of Municipal, Road Traffic, and Natural Sources on PM 10 : The Hourly Variability at a Rural Site in Poland," Energies, MDPI, vol. 14(9), pages 1-23, May.
    9. Robert Cichowicz & Maciej Dobrzański, 2021. "3D Spatial Analysis of Particulate Matter (PM 10 , PM 2.5 and PM 1.0 ) and Gaseous Pollutants (H 2 S, SO 2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant," Energies, MDPI, vol. 14(14), pages 1-21, July.
    10. Zbigniew Zuśka & Joanna Kopcińska & Ewa Dacewicz & Barbara Skowera & Jakub Wojkowski & Agnieszka Ziernicka–Wojtaszek, 2019. "Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM 10 ): A Case Study of the Mountain Valley (the ," Sustainability, MDPI, vol. 11(23), pages 1-12, November.
    11. Monika Załuska & Katarzyna Gładyszewska-Fiedoruk, 2020. "Regression Model of PM2.5 Concentration in a Single-Family House," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    12. Dominik Kryzia & Marta Kuta & Dominika Matuszewska & Piotr Olczak, 2020. "Analysis of the Potential for Gas Micro-Cogeneration Development in Poland Using the Monte Carlo Method," Energies, MDPI, vol. 13(12), pages 1-24, June.
    13. Bernard Zawada & Joanna Rucińska, 2021. "Optimization of Modernization of a Single-Family Building in Poland Including Thermal Comfort," Energies, MDPI, vol. 14(10), pages 1-21, May.
    14. Marcin Kremieniewski & Bartłomiej Jasiński & Grzegorz Zima & Łukasz Kut, 2021. "Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes," Energies, MDPI, vol. 14(12), pages 1-11, June.
    15. Agnieszka Operacz & Bogusław Bielec & Barbara Tomaszewska & Michał Kaczmarczyk, 2020. "Physicochemical Composition Variability and Hydraulic Conditions in a Geothermal Borehole—The Latest Study in Podhale Basin, Poland," Energies, MDPI, vol. 13(15), pages 1-18, July.
    16. Natalia Iwaszczuk & Jacek Wolak & Aleksander Iwaszczuk, 2021. "Turkmenistan’s Gas Sector Development Scenarios Based on Econometric and SWOT Analysis," Energies, MDPI, vol. 14(10), pages 1-18, May.
    17. Krzysztof Szczotka & Anna Barwińska-Małajowicz & Jakub Szymiczek & Radosław Pyrek, 2023. "Thermomodernization as a Mechanism for Improving Energy Efficiency and Reducing Emissions of Pollutants into the Atmosphere in a Public Utility Building," Energies, MDPI, vol. 16(13), pages 1-24, June.
    18. Piotr Przybyłowski & Adam Przybyłowski & Agnieszka Kałaska, 2021. "Utility Method as an Instrument of the Quality of Life Assessment Using the Examples of Selected European Cities," Energies, MDPI, vol. 14(10), pages 1-14, May.
    19. Karolina Bralewska & Wioletta Rogula-Kozłowska & Dominika Mucha & Artur Jerzy Badyda & Magdalena Kostrzon & Adrian Bralewski & Stanisław Biedugnis, 2022. "Properties of Particulate Matter in the Air of the Wieliczka Salt Mine and Related Health Benefits for Tourists," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
    20. Tomasz Gorzelnik & Marek Bogacki & Robert Oleniacz, 2024. "Identification of Factors Influencing Episodes of High PM 10 Concentrations in the Air in Krakow (Poland) Using Random Forest Method," Sustainability, MDPI, vol. 16(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5623-:d:556688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.