IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p208-d469506.html
   My bibliography  Save this article

Total Organic Carbon Assessment in Soils Cultivated with Agave tequilana Weber in Jalisco, Mexico

Author

Listed:
  • Celia De La Mora-Orozco

    (Departament of Integral Watershed Management, National Institute of Forestry, Agricultural and Livestock Research, Tepatitlán de Morelos, Jalisco C.P. 47600, Mexico)

  • José G. Flores-Garnica

    (Departament of Forest Fire, National Institute of Forestry, Agricultural and Livestock Research, Guadalajara, Jalisco C.P. 44660, Mexico)

  • Lucia M. Vega-Ramírez

    (Academic Unit Arandas, Departament of Environmental Engineering, Technological Institute José Mario Molina Pasquel y Henríquez, National Technological of México, Arandas, Jalisco C.P. 47180, Mexico)

  • Irma J. González-Acuña

    (Department of Soil Fertility, National Institute of Forestry, Agricultural and Livestock Research, Santiago Ixcuintla, Nayarit C.P. 63300, Mexico)

  • Juan Nápoles-Armenta

    (Faculty of Agronomy, Autonomus University of Nuevo León, General Escobedo, Nuevo León C.P. 66050, Mexico)

  • Edgardo Martínez-Orozco

    (Academic Unit Arandas, Departament of Environmental Engineering, Technological Institute José Mario Molina Pasquel y Henríquez, National Technological of México, Arandas, Jalisco C.P. 47180, Mexico)

Abstract

The Agave tequilana Weber is an important commercial crop in the State of Jalisco, Mexico. However, the agave cultivation generates significant soil loss. For that reason, knowledge about the implementation of the agriculture management practices, such as manure application and the combination of inorganic fertilizers and manure, are relevant. The objective of this research was to determine the effect of agricultural management practices on the total organic carbon (TOC) in the soil in three study locations: Arandas, Tepatitlán, and Acatic in the Altos Sur region of Jalisco. A random sampling was carried out in each study location, 12 samples were obtained for each location at 0–30 cm deep, and a total of 36 samples were analyzed. The evaluated parameters were the potential hydrogen (pH), electrical conductivity (EC), bulk density (BD), soil-water saturation (SWS), total nitrogen (TN), and total organic carbon (TOC). Basic statistics and correlations between parameters were generated. In addition, to estimate TOC from a multivariate analysis, models were developed based on the lowest Akaike information criterion (AIC) and of the classification and regression trees (CART). ANOVA and Tukey test were determined. Results demonstrated a significant difference in the TOC percentages between the study locations. The Tukey test showed that there is no difference in TOC content between the Tepatitlán and Arandas sites, but there is a difference between these two sites and the Acatic. The latter resulted with the lowest values of TOC. Long-term studies are recommended to develop crop management strategies.

Suggested Citation

  • Celia De La Mora-Orozco & José G. Flores-Garnica & Lucia M. Vega-Ramírez & Irma J. González-Acuña & Juan Nápoles-Armenta & Edgardo Martínez-Orozco, 2020. "Total Organic Carbon Assessment in Soils Cultivated with Agave tequilana Weber in Jalisco, Mexico," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:208-:d:469506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holly P. Jones & David G. Hole & Erika S. Zavaleta, 2012. "Harnessing nature to help people adapt to climate change," Nature Climate Change, Nature, vol. 2(7), pages 504-509, July.
    2. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    3. Will R. Turner & Michael Oppenheimer & David S. Wilcove, 2009. "A force to fight global warming," Nature, Nature, vol. 462(7271), pages 278-279, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Nazmul Huq & Antje Bruns & Lars Ribbe & Saleemul Huq, 2017. "Mainstreaming Ecosystem Services Based Climate Change Adaptation (EbA) in Bangladesh: Status, Challenges and Opportunities," Sustainability, MDPI, vol. 9(6), pages 1-20, June.
    5. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    6. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    7. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    8. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    9. Camila I. Donatti & Celia A. Harvey & David Hole & Steven N. Panfil & Hanna Schurman, 2020. "Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation," Climatic Change, Springer, vol. 158(3), pages 413-433, February.
    10. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    11. Kousky, Carolyn & Walls, Margaret & Chu, Ziyan, 2013. "Flooding and Resilience: Valuing Conservation Investments in a World with Climate Change," RFF Working Paper Series dp-13-38, Resources for the Future.
    12. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    13. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    14. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    15. Nazmul Huq & Alexander Stubbings, 2015. "How is the Role of Ecosystem Services Considered in Local Level Flood Management Policies: Case Study in Cumbria, England," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-29, December.
    16. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    17. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    18. Pettinotti, Laetitia & de Ayala, Amaia & Ojea, Elena, 2018. "Benefits From Water Related Ecosystem Services in Africa and Climate Change," Ecological Economics, Elsevier, vol. 149(C), pages 294-305.
    19. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    20. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:208-:d:469506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.