IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3650-d352929.html
   My bibliography  Save this article

A Sectoral Eco-Efficiency Analysis on Urban-Industrial Symbiosis

Author

Listed:
  • Yuli Bian

    (College of Economics and Management, South China Agricultural University, Guangzhou 510642, China)

  • Liang Dong

    (Department of Public Policy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
    School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China)

  • Zhaowen Liu

    (Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CN Delft, The Netherlands)

  • Lezhu Zhang

    (College of Economics and Management, South China Agricultural University, Guangzhou 510642, China)

Abstract

Urban-industrial symbiosis (UIS) is an important system innovation via sectors integration, and has been widely recognized as a novel pathway for achieving regional eco-industrial development. Eco-efficiency, as a mature approach and indicator, offers an effective tool to uncover both the status and trends of such a transformation. However, most studies have focused on the whole industry or city as a whole, which has meant that a view from the sectoral level focusing on UIS was missing. To fill this research gap, this paper applied a modified eco-efficiency approach using integrating input–output analysis (IOA) and carbon footprint (CFP) to identify the eco-efficiency benefits of UIS from a sectoral level. Specifically, sector-level economic data (as economic outputs) and CFP (as environmental impacts) are used to calculate the sectoral eco-efficiency. IOA helps to offer sectoral economic data, and, with integrating process-based inventory analysis, to conduct a CFP calculation at the sectoral level. To test the feasibility of the developed approach, urban industrial symbiosis scenarios in one typical industrial city of China were analyzed. This city is held up as the national pilot of the circular economy, low-carbon city, and ecological civilization in China. Scenarios analysis on a business as usual (no UIS) and with UIS implementation in 2012 were undertaken and compared with the change of sectoral CFP and eco-efficiency. The results highlighted a moderate increase in eco-efficiency and trade-offs in certain sectors, indicating that UIS was moderately effective in increasing the urban resource efficiency from a sectoral level, but a refined design was required. Policy recommendations are made based on the analytical results, to inform decision makers and urban and industrial managers seeking to improve the implementation of UIS as a means of achieving greater urban sustainability.

Suggested Citation

  • Yuli Bian & Liang Dong & Zhaowen Liu & Lezhu Zhang, 2020. "A Sectoral Eco-Efficiency Analysis on Urban-Industrial Symbiosis," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3650-:d:352929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Yves Courtonne & Julien Alapetite & Pierre-Yves Longaretti & Denis Dupré & Emmanuel Prados, 2015. "Downscaling material flow analysis: the case of the cereals supply chain in France," Working Papers hal-01142357, HAL.
    2. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    3. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    4. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    5. Fang, Kai & Dong, Liang & Ren, Jingzheng & Zhang, Qifeng & Han, Ling & Fu, Huizhen, 2017. "Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China," Ecological Modelling, Elsevier, vol. 365(C), pages 30-44.
    6. Jean-Yves Courtonne & Julien Alapetite & Pierre-Yves Longaretti & Denis Dupre, 2015. "Downscaling material flow analysis: the case of the cereal supply chain in France," Post-Print halshs-01321742, HAL.
    7. Hyeong-Woo Kim & Liang Dong & Seok Jung & Hung-Suck Park, 2018. "The Role of the Eco-Industrial Park (EIP) at the National Economy: An Input-Output Analysis on Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    8. Marian Chertow & John Ehrenfeld, 2012. "Organizing Self‐Organizing Systems," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 13-27, February.
    9. Dong, Liang & Fujita, Tsuyoshi & Zhang, Hui & Dai, Ming & Fujii, Minoru & Ohnishi, Satoshi & Geng, Yong & Liu, Zhu, 2013. "Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model," Energy Policy, Elsevier, vol. 61(C), pages 864-873.
    10. Zhang, Hui & Dong, Liang & Li, Huiquan & Fujita, Tsuyoshi & Ohnishi, Satoshi & Tang, Qing, 2013. "Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis," Energy Policy, Elsevier, vol. 61(C), pages 1400-1411.
    11. Wang, Yuanping & Ren, Hong & Dong, Liang & Park, Hung-Suck & Zhang, Yuepeng & Xu, Yanwei, 2019. "Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 103-117.
    12. Thomas Wiedmann, 2009. "Editorial: Carbon Footprint And Input-Output Analysis - An Introduction," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 175-186.
    13. Courtonne, Jean-Yves & Alapetite, Julien & Longaretti, Pierre-Yves & Dupré, Denis & Prados, Emmanuel, 2015. "Downscaling material flow analysis: The case of the cereal supply chain in France," Ecological Economics, Elsevier, vol. 118(C), pages 67-80.
    14. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    15. Hung‐Suck Park & Jae‐Yeon Won, 2007. "Ulsan Eco‐industrial Park: Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 11-13, July.
    16. René Van Berkel, 2010. "Quantifying Sustainability Benefits of Industrial Symbioses," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 371-373, June.
    17. Raffaella Taddeo & Alberto Simboli & Giuseppe Ioppolo & Anna Morgante, 2017. "Industrial Symbiosis, Networking and Innovation: The Potential Role of Innovation Poles," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong, Wen Ni & Liew, Peng Yen & Woon, Kok Sin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2021. "A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Xiaoli Hao & Yuhong Li & Ume Lail, 2022. "Sustainable development with city, industry, economic and environment: The role of city-industry integration on green economic growth," Journal of Regional Economics, Anser Press, vol. 1(1), pages 1-23, December.
    3. Zhaowen Liu & Martin de Jong & Fen Li & Nikki Brand & Marcel Hertogh & Liang Dong, 2020. "Towards Developing a New Model for Inclusive Cities in China—The Case of Xiong’an New Area," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    4. Carmen Ruiz-Puente, 2021. "Proposal of a Conceptual Model to Represent Urban-Industrial Systems from the Analysis of Existing Worldwide Experiences," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    5. Liang Dong & Zhaowen Liu & Yuli Bian, 2021. "Match Circular Economy and Urban Sustainability: Re-investigating Circular Economy Under Sustainable Development Goals (SDGs)," Circular Economy and Sustainability, Springer, vol. 1(1), pages 243-256, June.
    6. Rui Wang & Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Duoxun Ba & Wenbiao Zhang, 2020. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China," Sustainability, MDPI, vol. 13(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajia Huan & Ling Han, 2022. "Potential Contribution to Carbon Neutrality Strategy from Industrial Symbiosis: Evidence from a Local Coal-Aluminum-Electricity-Steel Industrial System," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    2. Hyeong-Woo Kim & Liang Dong & Seok Jung & Hung-Suck Park, 2018. "The Role of the Eco-Industrial Park (EIP) at the National Economy: An Input-Output Analysis on Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    3. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    4. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    5. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
    6. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    7. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    8. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    9. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
    10. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    11. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    12. Kovanda, Jan, 2022. "Monitoring food-related material flows with the use of economy-wide material system analysis," Ecological Economics, Elsevier, vol. 195(C).
    13. Jean‐Yves Courtonne & Pierre‐Yves Longaretti & Denis Dupré, 2018. "Uncertainties of Domestic Road Freight Statistics: Insights for Regional Material Flow Studies," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1189-1201, October.
    14. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Liesbeth de Schutter & Stefan Giljum & Tiina Häyhä & Martin Bruckner & Asjad Naqvi & Ines Omann & Sigrid Stagl, 2019. "Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    16. Hanspeter Wieland & Manfred Lenzen & Arne Geschke & Jacob Fry & Dominik Wiedenhofer & Nina Eisenmenger & Johannes Schenk & Stefan Giljum, 2022. "The PIOLab: Building global physical input–output tables in a virtual laboratory," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 683-703, June.
    17. Haiyan Shan & Junliang Yang & Guo Wei, 2019. "Industrial Symbiosis Systems: Promoting Carbon Emission Reduction Activities," IJERPH, MDPI, vol. 16(7), pages 1-23, March.
    18. Li Xue & Zhi Cao & Silvia Scherhaufer & Karin Östergren & Shengkui Cheng & Gang Liu, 2021. "Mapping the EU tomato supply chain from farm to fork for greenhouse gas emission mitigation strategies," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 377-389, April.
    19. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    20. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3650-:d:352929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.