IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v61y2013icp1400-1411.html
   My bibliography  Save this article

Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

Author

Listed:
  • Zhang, Hui
  • Dong, Liang
  • Li, Huiquan
  • Fujita, Tsuyoshi
  • Ohnishi, Satoshi
  • Tang, Qing

Abstract

CO2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89kg CO2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed.

Suggested Citation

  • Zhang, Hui & Dong, Liang & Li, Huiquan & Fujita, Tsuyoshi & Ohnishi, Satoshi & Tang, Qing, 2013. "Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis," Energy Policy, Elsevier, vol. 61(C), pages 1400-1411.
  • Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:1400-1411
    DOI: 10.1016/j.enpol.2013.05.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513004187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.05.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    2. Tina‐Simone Schmid Neset & Hans‐Peter Bader & Ruth Scheidegger, 2006. "Food Consumption and Nutrient Flows: Nitrogen in Sweden Since the 1870s," Journal of Industrial Ecology, Yale University, vol. 10(4), pages 61-75, October.
    3. Qinghua ZHU & Ernest A. LOWE & Yuan‐an WEI & Donald BARNES, 2007. "Industrial Symbiosis in China: A Case Study of the Guitang Group," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 31-42, January.
    4. Kleijn, René & van der Voet, Ester & Udo de Haes, Helias A., 2008. "The need for combining IEA and IE tools: The potential effects of a global ban on PVC on climate change," Ecological Economics, Elsevier, vol. 65(2), pages 266-281, April.
    5. Li, Huiquan & Bao, Weijun & Xiu, Caihong & Zhang, Yi & Xu, Hongbin, 2010. "Energy conservation and circular economy in China's process industries," Energy, Elsevier, vol. 35(11), pages 4273-4281.
    6. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    7. Noel Brings Jacobsen, 2006. "Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 239-255, January.
    8. Pierre Desrochers, 2001. "Cities and Industrial Symbiosis: Some Historical Perspectives and Policy Implications," Journal of Industrial Ecology, Yale University, vol. 5(4), pages 29-44, October.
    9. Arnold Tukker & René Kleijn & Ester van der Voet & Edith R. W. Smeets, 1997. "Chlorine in the Netherlands, Part II: Risk Management in Uncertainty for Chlorine," Journal of Industrial Ecology, Yale University, vol. 1(2), pages 91-110, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    2. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    3. Heshmati, Almas, 2015. "A Review of the Circular Economy and its Implementation," IZA Discussion Papers 9611, Institute of Labor Economics (IZA).
    4. Jarmo Uusikartano & Hannele Väyrynen & Leena Aarikka-Stenroos, 2020. "Public Agency in Changing Industrial Circular Economy Ecosystems: Roles, Modes and Structures," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    5. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    6. Dong, Liang & Fujita, Tsuyoshi & Zhang, Hui & Dai, Ming & Fujii, Minoru & Ohnishi, Satoshi & Geng, Yong & Liu, Zhu, 2013. "Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model," Energy Policy, Elsevier, vol. 61(C), pages 864-873.
    7. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    8. Harshini Mallawaarachchi & Gayani Karunasena & Yasangika Sandanayake & Chunlu Liu, 2023. "Conceptualising a Model to Assess the Optimum Water Flow of Industrial Symbiosis (IS)," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    9. Pakarinen, Suvi & Mattila, Tuomas & Melanen, Matti & Nissinen, Ari & Sokka, Laura, 2010. "Sustainability and industrial symbiosis—The evolution of a Finnish forest industry complex," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1393-1404.
    10. Pierre Desrochers & Frederic Sautet, 2008. "Entrepreneurial Policy: The Case of Regional Specialization vs. Spontaneous Industrial Diversity," Entrepreneurship Theory and Practice, , vol. 32(5), pages 813-832, September.
    11. Usón, Sergio & Valero, Antonio & Agudelo, Andrés, 2012. "Thermoeconomics and Industrial Symbiosis. Effect of by-product integration in cost assessment," Energy, Elsevier, vol. 45(1), pages 43-51.
    12. Carlos Scheel & Bernardo Bello, 2022. "Transforming Linear Production Chains into Circular Value Extended Systems," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    13. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    14. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    15. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    16. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    17. Liu, Changhao & Zhang, Kai, 2013. "Industrial ecology and water utilization of the marine chemical industry: A case study of Hai Hua Group (HHG), China," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 78-85.
    18. J. Raimbault & J. Broere & M. Somveille & J. M. Serna & E. Strombom & C. Moore & B. Zhu & L. Sugar, 2020. "A spatial agent based model for simulating and optimizing networked eco-industrial systems," Papers 2003.14133, arXiv.org.
    19. Jonathan S. Krones, 2017. "Industrial Symbiosis in the Upper Valley: A Study of the Casella-Hypertherm Recycling Partnership," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    20. Mohajan, Haradhan, 2021. "Circular Economy in China: Towards the Progress," MPRA Paper 109281, University Library of Munich, Germany, revised 03 Aug 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:1400-1411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.