IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3719-d353849.html
   My bibliography  Save this article

Condition Monitoring of DC-Link Electrolytic Capacitors in PWM Power Converters Using OBL Method

Author

Listed:
  • Ahmed G. Abo-Khalil

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Almajmaah 11952, Saudi Arabia
    Department of Electrical Engineering, College of Engineering, Assuit University, Assuit 71515, Egypt)

  • Abdel-Rahman Al-Qawasmi

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Almajmaah 11952, Saudi Arabia)

  • Ali M. Eltamaly

    (Saudi Electricity Company Chair in Power System Reliability and Security, King Saud University, Riyadh 11421, Saudi Arabia
    Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
    Electrical Engineering Department, Mansoura University, Mansoura 35516, Egypt)

  • B. G. Yu

    (Division of Electrical, Electronic and Control Engineering, Kongju National University, Chungcheongnam-do 31080, Korea)

Abstract

Since the lifespan of an electrolytic capacitor is relatively short compared to other power semiconductor devices, the failure rate accounts for 60% and, thus, it is the most vulnerable component of the power conversion device. Therefore, the accurate measurement of the lifetime of an electrolytic capacitor is very important in ensuring the reliability of the entire system, including the capacitor. In this paper, an online failure detection method for a DC-link electrolytic capacitor in a back-to-back Pulse width Modulation (PWM) converter using the opposition-based learning particle swarm optimization-based Support Vector Regression (OPSO-SVR) technique is proposed. In this method, the capacitance and the DC-link capacitor power have been used in offline mode for SVR training and testing. During the offline mode, the SVR parameters have been optimized with the OPSO algorithm to use online to estimate the real value of the DC-link capacitor. The experimental results prove the superiority of the proposed technique over the SVR.

Suggested Citation

  • Ahmed G. Abo-Khalil & Abdel-Rahman Al-Qawasmi & Ali M. Eltamaly & B. G. Yu, 2020. "Condition Monitoring of DC-Link Electrolytic Capacitors in PWM Power Converters Using OBL Method," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3719-:d:353849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed G. Abo-Khalil & Saeed Alyami & Ayman Alhejji & Ahmed B. Awan, 2019. "Real-Time Reliability Monitoring of DC-Link Capacitors in Back-to-Back Converters," Energies, MDPI, vol. 12(12), pages 1-11, June.
    2. Ahmed G. Abo-Khalil & Saeed Alyami & Khairy Sayed & Ayman Alhejji, 2019. "Dynamic Modeling of Wind Turbines Based on Estimated Wind Speed under Turbulent Conditions," Energies, MDPI, vol. 12(10), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    2. Ahmed G. Abo-Khalil & Ali M. Eltamaly & Praveen R.P. & Ali S. Alghamdi & Iskander Tlili, 2020. "A Sensorless Wind Speed and Rotor Position Control of PMSG in Wind Power Generation Systems," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    2. Ali Mohamed Eltamaly & Mamdooh Al-Saud & Khairy Sayed & Ahmed G. Abo-Khalil, 2020. "Sensorless Active and Reactive Control for DFIG Wind Turbines Using Opposition-Based Learning Technique," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    3. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.
    4. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    5. Ahmed G. Abo-Khalil & Ali M. Eltamaly & Praveen R.P. & Ali S. Alghamdi & Iskander Tlili, 2020. "A Sensorless Wind Speed and Rotor Position Control of PMSG in Wind Power Generation Systems," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    6. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    7. Yingming Liu & Shuyuan Zhang & Xiaodong Wang & Hongfang Xie & Tian Cao, 2022. "Optimization of Pitch Control Parameters for a Wind Turbine Based on Tower Active Damping Control," Energies, MDPI, vol. 15(22), pages 1-22, November.
    8. Khairy Sayed & Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2019. "Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources," Energies, MDPI, vol. 12(22), pages 1-23, November.
    9. Ahmed G. Abo-Khalil & Saeed Alyami & Ayman Alhejji & Ahmed B. Awan, 2019. "Real-Time Reliability Monitoring of DC-Link Capacitors in Back-to-Back Converters," Energies, MDPI, vol. 12(12), pages 1-11, June.
    10. Shazly A. Mohamed & Mohamed A. Tolba & Ayman A. Eisa & Ali M. El-Rifaie, 2021. "Comprehensive Modeling and Control of Grid-Connected Hybrid Energy Sources Using MPPT Controller," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. Mohammad Mujahid Irfan & Sushama Malaji & Chandrashekhar Patsa & Shriram S. Rangarajan & S. M. Suhail Hussain, 2022. "Control of DSTATCOM Using ANN-BP Algorithm for the Grid Connected Wind Energy System," Energies, MDPI, vol. 15(19), pages 1-14, September.
    12. Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2021. "MPPT of Permanent Magnet Synchronous Generator in Tidal Energy Systems Using Support Vector Regression," Sustainability, MDPI, vol. 13(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3719-:d:353849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.