IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3277-d347089.html
   My bibliography  Save this article

Compounded Heat and Fire Risk for Future U.S. Populations

Author

Listed:
  • Brice B. Hanberry

    (USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD 57702, USA)

Abstract

Climate change is increasing the risk of extreme events, resulting in social and economic challenges. I examined recent past (1971–2000), current and near future (2010–2039), and future (2040–2069) fire and heat hazard combined with population growth by different regions and residential densities (i.e., exurban low and high densities, suburban, and urban low and high densities). Regional values for extreme fire weather days varied greatly. Temperature and number of extreme fire weather days increased over time for all residential density categories, with the greatest increases in the exurban low-density category. The urban high-density category was about 0.8 to 1 °C cooler than the urban low-density category. The areas of the urban and suburban density categories increased relative to the exurban low-density category. Holding climate change constant at 1970–2000 resulted in a temperature increase of 0.4 to 0.8 °C by 2060, indicating future population increases in warmer areas. Overall, U.S. residents will experience greater exposure to fire hazard and heat over time due to climate change, and compound risk emerges because fire weather and heat are coupled and have effects across sectors. Movement to urban centers will help offset exposure to fire but not heat, because urban areas are heat islands; however, urban high-density areas had lower base temperatures, likely due to city locations along coastlines. This analysis provides a timely look at potential trends in fire and heat risk by residential density classes due to the expansion and migration of US populations.

Suggested Citation

  • Brice B. Hanberry, 2020. "Compounded Heat and Fire Risk for Future U.S. Populations," Sustainability, MDPI, vol. 12(8), pages 1-12, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3277-:d:347089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathew E. Hauer & Jason M. Evans & Deepak R. Mishra, 2016. "Millions projected to be at risk from sea-level rise in the continental United States," Nature Climate Change, Nature, vol. 6(7), pages 691-695, July.
    2. Geoffrey H. Donovan & Patricia A. Champ & David T. Butry, 2007. "Wildfire Risk and Housing Prices: A Case Study from Colorado Springs," Land Economics, University of Wisconsin Press, vol. 83(2), pages 217-233.
    3. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    4. Bryan Jones & Claudia Tebaldi & Brian C. O’Neill & Keith Oleson & Jing Gao, 2018. "Avoiding population exposure to heat-related extremes: demographic change vs climate change," Climatic Change, Springer, vol. 146(3), pages 423-437, February.
    5. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    6. Mark D. Partridge & Bo Feng & Mark Rembert, 2017. "Improving Climate-Change Modeling of US Migration," American Economic Review, American Economic Association, vol. 107(5), pages 451-455, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evelyn G. Shu & Jeremy R. Porter & Mathew E. Hauer & Sebastian Sandoval Olascoaga & Jesse Gourevitch & Bradley Wilson & Mariah Pope & David Melecio-Vazquez & Edward Kearns, 2023. "Integrating climate change induced flood risk into future population projections," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Matteo Benetton & Simone Emiliozzi & Elisa Guglielminetti & Michele Loberto & Alessandro Mistretta, 2022. "Do house prices reflect climate change adaptation? Evidence from the city on the water," Questioni di Economia e Finanza (Occasional Papers) 735, Bank of Italy, Economic Research and International Relations Area.
    3. Parton, Lee C. & Dundas, Steven J., 2020. "Fall in the sea, eventually? A green paradox in climate adaptation for coastal housing markets," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    4. Jaime Madrigano & Regina A. Shih & Maxwell Izenberg & Jordan R. Fischbach & Benjamin L. Preston, 2021. "Science Policy to Advance a Climate Change and Health Research Agenda in the United States," IJERPH, MDPI, vol. 18(15), pages 1-15, July.
    5. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    6. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    7. Xi Chen & Chih Ming Tan & Xiaobo Zhang & Xin Zhang, 2020. "The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1263-1302, October.
    8. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Hsing-Hsiang Huang & Michael R. Moore, 2018. "Farming under Weather Risk: Adaptation, Moral Hazard, and Selection on Moral Hazard," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 77-124, National Bureau of Economic Research, Inc.
    10. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    12. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    13. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    14. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Andrew Kirby, 2022. "The Right to Make Mistakes? The Limits to Adaptive Planning for Climate Change," Challenges, MDPI, vol. 13(1), pages 1-10, June.
    16. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    17. Sinha, Paramita & Caulkins, Martha & Cropper, Maureen L., 2018. "Do Discrete Choice Approaches to Valuing Urban Amenities Yield Different Results Than Hedonic Models?," RFF Working Paper Series 18-02, Resources for the Future.
    18. Fritz, Manuela, 2021. "Temperature and non-communicable diseases: Evidence from Indonesia's primary health care system," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-84-21, University of Passau, Faculty of Business and Economics.
    19. Yan Chen & Xiaohong Chen & Hongshan Ai & Xiaoqing Tan, 2022. "Temperature and Migration Intention: Evidence from the Unified National Graduate Entrance Examination in China," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    20. Stefano Giglio & Bryan Kelly & Johannes Stroebel, 2021. "Climate Finance," Annual Review of Financial Economics, Annual Reviews, vol. 13(1), pages 15-36, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3277-:d:347089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.