IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224017055.html
   My bibliography  Save this article

Decomposition analysis of regional differences in China's carbon emissions based on socio-economic factors

Author

Listed:
  • Pan, Xiongfeng
  • Guo, Shucen

Abstract

Developing policies and setting carbon reduction targets for various regions in China are important actions to narrow the gap of regional carbon emissions. This study reports on the differences in carbon emissions in the eastern, central, and western regions of China from 2005 to 2021 using the Theil index, and decomposes carbon emissions into emission intensity, industrial structure, economic scale, and population size effects using the Logarithmic Mean Divisia Index. In order to analyze the impact of socio-economic factors on carbon emissions, the industrial structure and emission intensity effects are divided into six socio-economic sectors. The major outcomes reported that: (1) the regional differences account for 70 % of the total carbon emissions difference, and the eastern region reported the most significant carbon emission difference; (2) the emission intensity and the economy scale are the top two effects on carbon emissions. The economic scale effect always drives an increase in carbon emissions, while emission intensity promotes a decrease in carbon emissions. The industrial structure effect shows a gradually decreasing trend in all regions, especially in the eastern region, the effect has turned negative since 2013. This is due to the proposed industrial transformation and upgrading in China since 2013, which has promoted the reconstruction of competitive advantages for high polluting heavy industry enterprises and accelerating the green transformation of industrial technology; (3) the industry sector contributes to the highest carbon emissions, followed by the transportation sector. Both sectors are the top two emitters and should be targeted for carbon reduction. The carbon emissions were generated based on the terminal energy consumption. The contribution effects of multiple industries and the differences in carbon emissions as affected by the driving factors and economic mechanisms among different regions in China were analyzed.

Suggested Citation

  • Pan, Xiongfeng & Guo, Shucen, 2024. "Decomposition analysis of regional differences in China's carbon emissions based on socio-economic factors," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017055
    DOI: 10.1016/j.energy.2024.131932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianzhao Liu & Xu Yang & Ruoxin Guo, 2020. "Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method," Sustainability, MDPI, vol. 12(7), pages 1-24, March.
    2. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    3. Yuan Zhang & Zhen Yu & Juan Zhang, 2021. "Analysis of carbon emission performance and regional differences in China’s eight economic regions: Based on the super-efficiency SBM model and the Theil index," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    4. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    5. Fan, Wei & Li, Li & Wang, Feiran & Li, Ding, 2020. "Driving factors of CO2 emission inequality in China: The role of government expenditure," China Economic Review, Elsevier, vol. 64(C).
    6. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    7. Behnam Ata & Parisa Pakrooh & Ayoub Barkat & Ramzi Benhizia & János Pénzes, 2022. "Inequalities in Regional Level Domestic CO 2 Emissions and Energy Use: A Case Study of Iran," Energies, MDPI, vol. 15(11), pages 1-26, May.
    8. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    9. Wang Hei Bruce Chong & Dabo Guan & Peter Guthrie, 2012. "Comparative Analysis of Carbonization Drivers in China's Megacities," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 564-575, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    2. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    3. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    4. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    5. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    6. Fan, Wei & Li, Li & Wang, Feiran & Li, Ding, 2020. "Driving factors of CO2 emission inequality in China: The role of government expenditure," China Economic Review, Elsevier, vol. 64(C).
    7. Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    8. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    9. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry," Energies, MDPI, vol. 15(18), pages 1-19, September.
    10. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    11. Wang, Bo & Sun, Yefei & Chen, Qingxiang & Wang, Zhaohua, 2018. "Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 127-132.
    12. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    13. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    14. Holzmann, Angela & Adensam, Heidelinde & Kratena, Kurt & Schmid, Erwin, 2013. "Decomposing final energy use for heating in the residential sector in Austria," Energy Policy, Elsevier, vol. 62(C), pages 607-616.
    15. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    16. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    17. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    18. Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015. "Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    19. Ta-Thi Huong & Liang Dong & Izhar Hussain Shah & Hung-Suck Park, 2021. "Exploring the Sustainability of Resource Flow and Productivity Transition in Vietnam from 1978 to 2017: MFA and DEA-Based Malmquist Productivity Index Approach," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    20. Meiting Tu & Ye Li & Lei Bao & Yuao Wei & Olivier Orfila & Wenxiang Li & Dominique Gruyer, 2019. "Logarithmic Mean Divisia Index Decomposition of CO 2 Emissions from Urban Passenger Transport: An Empirical Study of Global Cities from 1960–2001," Sustainability, MDPI, vol. 11(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.