IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2150-d330916.html
   My bibliography  Save this article

Estimating Soil Available Phosphorus Content through Coupled Wavelet–Data-Driven Models

Author

Listed:
  • Jalal Shiri

    (Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran)

  • Ali Keshavarzi

    (Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O.Box: 4111, Karaj 31587-77871, Iran
    Department of Mining Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey)

  • Ozgur Kisi

    (Faculty of Natural Sciences and Engineering, Ilia State University, 0162 Tbilisi, Georgia)

  • Sahar Mohsenzadeh Karimi

    (Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran)

  • Sepideh Karimi

    (Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran)

  • Amir Hossein Nazemi

    (Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran)

  • Jesús Rodrigo-Comino

    (Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, 46010 Valencia, Spain
    Physical Geography, Trier University, 54286 Trier, Germany)

Abstract

Soil phosphorus (P) is a vital but limited element which is usually leached from the soil via the drainage process. Soil phosphorus as a soluble substance can be delivered through agricultural fields by runoff or soil loss. It is one of the most essential nutrients that affect the sustainability of crops as well as the energy transfer for living organisms. Therefore, an accurate simulation of soil phosphorus, which is considered as a point source pollutant in elevated contents, must be performed. Considering a crucial issue for a sustainable soil and water management, an effective soil phosphorus assessment in the current research was conducted with the aim of examining the capability of five different wavelet-based data-driven models: gene expression programming (GEP), neural networks (NN), random forest (RF), multivariate adaptive regression spline (MARS), and support vector machine (SVM) in modeling soil phosphorus (P). In order to achieve this goal, several parameters, including soil pH, organic carbon (OC), clay content, and soil P data, were collected from different regions of the Neyshabur plain, Khorasan-e-Razavi Province (Northeast Iran). First, a discrete wavelet transform (DWT) was applied to the pH, OC, and clay as the inputs and their subcomponents were utilized in the applied data-driven techniques. Statistical Gamma test was also used for identifying which effective soil parameter is able to influence soil P. The applied methods were assessed through 10-fold cross-validation scenarios. Our results demonstrated that the wavelet–GEP (WGEP) model outperformed the other models with respect to various validations, such as correlation coefficient (R), scatter index (SI), and Nash–Sutcliffe coefficient (NS) criteria. The GEP model improved the accuracy of the MARS, RF, SVM, and NN models with respect to SI-NS (By comparing the SI values of the GEP model with other models namely MARS, RF, SVM, and NN, the outputs of GEP showed more accuracy by 35%, 30%, 40%, 50%, respectively. Similarly, the results of the GEP outperformed the other models by 3.1%, 2.3%, 4.3%, and 7.6%, comparing their NS values.) by 35%-3.1%, 30%-2.3%, 40%-4.3%, and 50%-7.6%, respectively.

Suggested Citation

  • Jalal Shiri & Ali Keshavarzi & Ozgur Kisi & Sahar Mohsenzadeh Karimi & Sepideh Karimi & Amir Hossein Nazemi & Jesús Rodrigo-Comino, 2020. "Estimating Soil Available Phosphorus Content through Coupled Wavelet–Data-Driven Models," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2150-:d:330916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mak Kaboudan, 2005. "Extended Daily Exchange Rates Forecasts Using Wavelet Temporal Resolutions," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 79-107.
    2. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    3. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Barzkar & Mohammad Najafzadeh & Farshad Homaei, 2022. "Evaluation of drought events in various climatic conditions using data-driven models and a reliability-based probabilistic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1931-1952, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    2. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    3. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    5. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    9. Tobias Straub & Mandy Nagy & Maxim Sidorov & Leonardo Tonetto & Michael Frey & Frank Gauterin, 2020. "Energetic Map Data Imputation: A Machine Learning Approach," Energies, MDPI, vol. 13(4), pages 1-23, February.
    10. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    12. Ben Ammar, Rim & Ben Ammar, Mohsen & Oualha, Abdelmajid, 2020. "Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems," Renewable Energy, Elsevier, vol. 153(C), pages 1016-1028.
    13. Ahmed Aljanad & Nadia M. L. Tan & Vassilios G. Agelidis & Hussain Shareef, 2021. "Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-20, February.
    14. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    15. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    16. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    17. Nuzhat Khan & Mohamad Anuar Kamaruddin & Usman Ullah Sheikh & Yusri Yusup & Muhammad Paend Bakht, 2021. "Oil Palm and Machine Learning: Reviewing One Decade of Ideas, Innovations, Applications, and Gaps," Agriculture, MDPI, vol. 11(9), pages 1-26, August.
    18. Xin Ma & Yubin Cai & Hong Yuan & Yanqiao Deng, 2023. "Partially Linear Component Support Vector Machine for Primary Energy Consumption Forecasting of the Electric Power Sector in the United States," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    19. Fausto André Valenzuela-Domínguez & Luis Alfonso Santa Cruz & Enrique A. Enríquez-Velásquez & Luis C. Félix-Herrán & Victor H. Benitez & Jorge de-J. Lozoya-Santos & Ricardo A. Ramírez-Mendoza, 2021. "Solar Irradiation Evaluation through GIS Analysis Based on Grid Resolution and a Mathematical Model: A Case Study in Northeast Mexico," Energies, MDPI, vol. 14(19), pages 1-37, October.
    20. Fathi Abid & Wafa Abdelmalek & Sana Ben Hamida, 2020. "Dynamic Hedging using Generated Genetic Programming Implied Volatility Models," Papers 2006.16407, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2150-:d:330916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.