IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1918-d327845.html
   My bibliography  Save this article

A Mixed Rough Sets/Fuzzy Logic Approach for Modelling Systemic Performance Variability with FRAM

Author

Listed:
  • Hussein Slim

    (Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 Notre-Dame St W, Montreal, QC H3C 1K3, Canada)

  • Sylvie Nadeau

    (Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 Notre-Dame St W, Montreal, QC H3C 1K3, Canada)

Abstract

The task to understand systemic functioning and predict the behavior of today’s sociotechnical systems is a major challenge facing researchers due to the nonlinearity, dynamicity, and uncertainty of such systems. Many variables can only be evaluated in terms of qualitative terms due to their vague nature and uncertainty. In the first stage of our project, we proposed the application of the Functional Resonance Analysis Method (FRAM), a recently emerging technique, to evaluate aircraft deicing operations from a systemic perspective. In the second stage, we proposed the integration of fuzzy logic into FRAM to construct a predictive assessment model capable of providing quantified outcomes to present more intersubjective and comprehensible results. The integration process of fuzzy logic was thorough and required significant effort due to the high number of input variables and the consequent large number of rules. In this paper, we aim to further improve the proposed prototype in the second stage by integrating rough sets as a data-mining tool to generate and reduce the size of the rule base and classify outcomes. Rough sets provide a mathematical framework suitable for deriving rules and decisions from uncertain and incomplete data. The mixed rough sets/fuzzy logic model was applied again here to the context of aircraft deicing operations, keeping the same settings as in the second stage to better compare both results. The obtained results were identical to the results of the second stage despite the significant reduction in size of the rule base. However, the presented model here is a simulated one constructed with ideal data sets accounting for all possible combinations of input variables, which resulted in maximum accuracy. The same should be further optimized and examined using real-world data to validate the results.

Suggested Citation

  • Hussein Slim & Sylvie Nadeau, 2020. "A Mixed Rough Sets/Fuzzy Logic Approach for Modelling Systemic Performance Variability with FRAM," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1918-:d:327845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1918/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    2. Ashwani Kumar & D. P. Agrawal & S. D. Joshi, 2005. "Advertising Data Analysis Using Rough Sets Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 263-276.
    3. Patriarca, Riccardo & Falegnami, Andrea & Costantino, Francesco & Bilotta, Federico, 2018. "Resilience engineering for socio-technical risk analysis: Application in neuro-surgery," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 321-335.
    4. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    5. Konstandinidou, Myrto & Nivolianitou, Zoe & Kiranoudis, Chris & Markatos, Nikolaos, 2006. "A fuzzy modeling application of CREAM methodology for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 706-716.
    6. Constantin Zopounidis & Michael Doumpos, 1999. "Business failure prediction using the UTADIS multicriteria analysis method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1138-1148, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dagui Liu & Weiqing Wang & Huie Zhang & Wei Shi & Caiqing Bai & Huimin Zhang, 2023. "Day-Ahead and Intra-Day Optimal Scheduling Considering Wind Power Forecasting Errors," Sustainability, MDPI, vol. 15(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    2. Shrutika Mishra & A. R. Tripathi, 2021. "AI business model: an integrative business approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
    3. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    4. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    7. Angeliki Papana & Anastasia Spyridou, 2020. "Bankruptcy Prediction: The Case of the Greek Market," Forecasting, MDPI, vol. 2(4), pages 1-21, December.
    8. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    9. Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
    10. Chung-Ho Su, 2017. "A Novel Hybrid Learning Achievement Prediction Model: A Case Study in Gamification Education Applications (APPs)," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 515-543, March.
    11. Jie Sun, 2012. "Integration Of Random Sample Selection, Support Vector Machines And Ensembles For Financial Risk Forecasting With An Empirical Analysis On The Necessity Of Feature Selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 229-246, October.
    12. Sheikh Rabiul Islam & William Eberle & Sheikh K. Ghafoor & Sid C. Bundy & Douglas A. Talbert & Ambareen Siraj, 2019. "Investigating bankruptcy prediction models in the presence of extreme class imbalance and multiple stages of economy," Papers 1911.09858, arXiv.org.
    13. Fernando Zambrano Farias & María del Carmen Valls Martínez & Pedro Antonio Martín-Cervantes, 2021. "Explanatory Factors of Business Failure: Literature Review and Global Trends," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    14. Nikolaos Daskalakis & Nikolaos Aggelakis & John Filos, 2022. "Applying, Updating and Comparing Bankruptcy Forecasting Models. The Case of Greece," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 21(3), pages 335-354, September.
    15. Li, Hui & Sun, Jie, 2012. "Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples – Evidence from the Chinese hotel industry," Tourism Management, Elsevier, vol. 33(3), pages 622-634.
    16. I Y-F Huang & W-W Wu & Y-T Lee, 2008. "Simplifying essential competencies for Taiwan civil servants using the rough set approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 259-265, February.
    17. Michael Doumpos & Constantin Zopounidis, 1999. "A Multicriteria Discrimination Method for the Prediction of Financial Distress: The Case of Greece," Multinational Finance Journal, Multinational Finance Journal, vol. 3(2), pages 71-101, June.
    18. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    20. Roumani, Yaman & Nwankpa, Joseph K. & Roumani, Yazan F., 2016. "Examining the relationship between firm’s financial records and security vulnerabilities," International Journal of Information Management, Elsevier, vol. 36(6), pages 987-994.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1918-:d:327845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.