IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v16y2017i02ns0219622017500092.html
   My bibliography  Save this article

A Novel Hybrid Learning Achievement Prediction Model: A Case Study in Gamification Education Applications (APPs)

Author

Listed:
  • Chung-Ho Su

    (Department of Animation and Game Design, Shu-Te University, Kaohsiung City, 82445, Taiwan)

Abstract

Adaptive Neuro Fuzzy Inference System (ANFIS) used to be applied to finance, engineering, material design, and decision-making management in past research, but seldom to predict educational learning performance. In recent research, gamification learning material design is often applied to reinforce learning performance, while the prediction of gamification learning performance is seldom discussed. This study therefore applies Rough set theory to extract Core Set and generating rule, ANFIS for learning achievement predication. In order to evaluate the performance of proposed model, the VCCSEGLS dataset are collected as experimental dataset and compared with other models. The results show that the proposed method outperforms the listing models in accuracy. The three key factors are extract, (G7) Time spent on game-based learning, (L1) Examination, normal drugs and treatment, and (L2) Integration ability (time scoring, stability scoring, strain capacity, completeness scoring).The proposed model also can offer accurate predictions and provide some simple decision rules, which can be accurately used by decision-makers and game designers.

Suggested Citation

  • Chung-Ho Su, 2017. "A Novel Hybrid Learning Achievement Prediction Model: A Case Study in Gamification Education Applications (APPs)," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 515-543, March.
  • Handle: RePEc:wsi:ijitdm:v:16:y:2017:i:02:n:s0219622017500092
    DOI: 10.1142/S0219622017500092
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622017500092
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622017500092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    2. Gang Kou & Yanqun Lu & Yi Peng & Yong Shi, 2012. "Evaluation Of Classification Algorithms Using Mcdm And Rank Correlation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 197-225.
    3. Constantin Zopounidis & Michael Doumpos, 1999. "Business failure prediction using the UTADIS multicriteria analysis method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1138-1148, November.
    4. Kou, Gang & Ergu, Daji & Shang, Jennifer, 2014. "Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction," European Journal of Operational Research, Elsevier, vol. 236(1), pages 261-271.
    5. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    6. Pawlak, Zdzislaw, 1997. "Rough set approach to knowledge-based decision support," European Journal of Operational Research, Elsevier, vol. 99(1), pages 48-57, May.
    7. Muhammad Arif & Manzoor Illahi & Ahmad Karim & Shahaboddin Shamshirband & Khubaib Alam & Shahid Farid & Salman Iqbal & Zolkepli Buang & Valentina Balas, 2015. "An architecture of agent-based multi-layer interactive e-learning and e-testing platform," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2435-2458, November.
    8. Guangxu Li & Gang Kou & Changsheng Lin & Liang Xu & Yi Liao, 2015. "Multi-attribute decision making with generalized fuzzy numbers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1793-1803, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Barbagallo & Simona Consoli & Nello Pappalardo & Salvatore Greco & Santo Zimbone, 2006. "Discovering Reservoir Operating Rules by a Rough Set Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 19-36, February.
    2. Gia Sirbiladze & Irina Khutsishvili & Otar Badagadze & Mikheil Kapanadze, 2016. "More Precise Decision-Making Methodology in the Temporalized Body of Evidence. Application in the Information Technology Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1469-1502, November.
    3. Shaher H. Zyoud & Daniela Fuchs-Hanusch, 2019. "Comparison of Several Decision-Making Techniques: A Case of Water Losses Management in Developing Countries," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1551-1578, September.
    4. Gia Sirbiladze, 2016. "New Fuzzy Aggregation Operators Based on the Finite Choquet Integral — Application in the MADM Problem," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 517-551, May.
    5. Honghao Zhang & Yong Peng & Guangdong Tian & Danqi Wang & Pengpeng Xie, 2017. "Green material selection for sustainability: A hybrid MCDM approach," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-26, May.
    6. Eduardo Fernandez & Jorge Navarro & Rafael Olmedo, 2018. "Characterization of the Effectiveness of Several Outranking-Based Multi-Criteria Sorting Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1047-1084, July.
    7. Sarah Ben Amor & Fateh Belaid & Ramzi Benkraiem & Boumediene Ramdani & Khaled Guesmi, 2023. "Multi-criteria classification, sorting, and clustering: a bibliometric review and research agenda," Annals of Operations Research, Springer, vol. 325(2), pages 771-793, June.
    8. O. H. Salman & A. A. Zaidan & B. B. Zaidan & Naserkalid & M. Hashim, 2017. "Novel Methodology for Triage and Prioritizing Using “Big Data” Patients with Chronic Heart Diseases Through Telemedicine Environmental," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1211-1245, September.
    9. Xie, Feng & Lin, Yi & Ren, Wenwei, 2011. "Optimizing model for land use/land cover retrieval from remote sensing imagery based on variable precision rough sets," Ecological Modelling, Elsevier, vol. 222(2), pages 232-240.
    10. Aleksandras Krylovas & Stanislavas Dadelo & Natalja Kosareva & Edmundas Kazimieras Zavadskas, 2017. "Entropy–KEMIRA Approach for MCDM Problem Solution in Human Resources Selection Task," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1183-1209, September.
    11. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    12. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    13. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    14. Shrutika Mishra & A. R. Tripathi, 2021. "AI business model: an integrative business approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
    15. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    16. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    17. Eleonora Bottani & Piera Centobelli & Teresa Murino & Ehsan Shekarian, 2018. "A QFD-ANP Method for Supplier Selection with Benefits, Opportunities, Costs and Risks Considerations," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 911-939, May.
    18. Xunjie Gou & Zeshui Xu & Huchang Liao, 2019. "Hesitant Fuzzy Linguistic Possibility Degree-Based Linear Assignment Method for Multiple Criteria Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 35-63, January.
    19. Beynon, Malcolm J., 2005. "A novel technique of object ranking and classification under ignorance: An application to the corporate failure risk problem," European Journal of Operational Research, Elsevier, vol. 167(2), pages 493-517, December.
    20. Viral Gupta & P. K. Kapur & Deepak Kumar, 2019. "Prioritizing and Optimizing Disaster Recovery Solution using Analytic Network Process and Multi Attribute Utility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 171-207, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:16:y:2017:i:02:n:s0219622017500092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.