IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1321-d319460.html
   My bibliography  Save this article

Temporal and Spatial Differences in the Resilience of Smart Cities and Their Influencing Factors: Evidence from Non-Provincial Cities in China

Author

Listed:
  • Xiaojun Dong

    (School of Economics Teaching & Research, Party School of the Central Committee of C.P.C. (Chinese Academy of Governance), Beijing 100091, China)

  • Tao Shi

    (School of Economics Teaching & Research, Party School of the Central Committee of C.P.C. (Chinese Academy of Governance), Beijing 100091, China
    Economic Institute, Henan Academy of Social Science, Zhengzhou 450002, China)

  • Wei Zhang

    (School of Public Administration, Central China Normal University, Wuhan 430019, Hubei, China)

  • Qian Zhou

    (School of Shanghai Development & Institute of Free Trade Zone, Shanghai University of Finance and Economics, Shanghai 200433, China)

Abstract

Based on the sample data of 81 non-provincial smart cities in China in 2017, the comprehensive evaluation index of the resilience of sample cities is calculated by using the entropy method, and the spatial differences of different factors on the resiliency are analyzed by using the geographical weighted regression (GWR) model. The conclusions are as follows: Firstly, the comprehensive evaluation index of the resilience of smart cities presents a spatial distribution characteristic of decreasing from the east to the west. At the same time, the resilience comprehensive index, the public infrastructure resilience capacity index, the economic development resilience index, the social security resilience index, and the ecological environment resilience index of smart cities have obvious agglomeration effects on their geographical spaces. Secondly, the public infrastructure resilience capacity index and the ecological environment resilience index are both low with a discrete distribution, while the economic development resilience index and the social security resilience index are both high with a concentrated distribution. Thirdly, different factors have significantly positive effects on the resilience of smart cities. In particular, the public infrastructure capacity resilience index decreases from the north to the south with the spatial distribution pattern of concentration, the economic development resilience index and the ecological environment resilience index of smart cities decrease from the east to the west with a concentrated spatial distribution pattern, and the social security resilience index of smart cities decreases from the southwest to the northeast with a concentrated spatial distribution pattern. Therefore, it is necessary to enhance awareness of smart cities, strengthen the driving force of science and technology innovation, strengthen public infrastructure and service construction, and continuously improve the rapid resilience of smart cities.

Suggested Citation

  • Xiaojun Dong & Tao Shi & Wei Zhang & Qian Zhou, 2020. "Temporal and Spatial Differences in the Resilience of Smart Cities and Their Influencing Factors: Evidence from Non-Provincial Cities in China," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1321-:d:319460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanos, Sotirios & Dubé, Jean & Legros, Diègo, 2016. "Putting time into space: the temporal coherence of spatial applications in the housing market," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 78-88.
    2. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Wang, Yuanping & Ren, Hong & Dong, Liang & Park, Hung-Suck & Zhang, Yuepeng & Xu, Yanwei, 2019. "Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 103-117.
    4. Fikret Berkes, 2007. "Understanding uncertainty and reducing vulnerability: lessons from resilience thinking," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 283-295, May.
    5. Annalisa Cocchia, 2014. "Smart and Digital City: A Systematic Literature Review," Progress in IS, in: Renata Paola Dameri & Camille Rosenthal-Sabroux (ed.), Smart City, edition 127, pages 13-43, Springer.
    6. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Chen & Fangyi Rong & Shenghui Li, 2024. "Driving Force–Pressure–State–Impact–Response-Based Evaluation of Rural Human Settlements’ Resilience and Their Influencing Factors: Evidence from Guangdong, China," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    2. Changyuan He & Qiang Zhang & Gang Wang & Vijay P. Singh & Tiantian Li & Shuai Cui, 2023. "Evaluation of Urban Resilience of China’s Three Major Urban Agglomerations Using Complex Adaptive System Theory," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    3. Pengpeng Chang & Xueru Pang & Xiong He & Yiting Zhu & Chunshan Zhou, 2022. "Exploring the Spatial Relationship between Nighttime Light and Tourism Economy: Evidence from 31 Provinces in China," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    4. Ying Zhang & Yunyan Li, 2024. "A Study on the Coupling Coordination of Urban Resilience and the Tourism Economy in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
    5. Jilin Wu & Manhong Yang & Jinyou Zuo & Ningling Yin & Yimin Yang & Wenhai Xie & Shuiliang Liu, 2024. "Spatio-Temporal Evolution of Ecological Resilience in Ecologically Fragile Areas and Its Influencing Factors: A Case Study of the Wuling Mountains Area, China," Sustainability, MDPI, vol. 16(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chao & Zhan, Jinyan & Xin, Zhongling, 2020. "Comparative analysis of urban ecological management models incorporating low-carbon transformation," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    2. Olga Bogdanov & Veljko Jeremiæ & Sandra Jednak & Mladen Èudanov, 2019. "Scrutinizing the Smart City Index: a multivariate statistical approach," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(2), pages 777-799.
    3. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    4. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    5. Ana Raquel Nunes, 2021. "Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2261-2293, December.
    6. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    7. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    8. Anthony Simonofski & Estefanía Serral Asensio & Johannes Smedt & Monique Snoeck, 2019. "Hearing the Voice of Citizens in Smart City Design: The CitiVoice Framework," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 665-678, December.
    9. Federico Delfino & Paola Laiolo & Federico Delfino, 2019. "Living Labs and Partnerships for Progress-How Universities can Drive the Process towards the Sustainable City," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(2), pages 71-73, April.
    10. Benjamin Maas, 2022. "Literature Review of Mobility as a Service," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    11. Lin, Boqiang & Bega, François, 2021. "China's Belt & Road Initiative coal power cooperation: Transitioning toward low-carbon development," Energy Policy, Elsevier, vol. 156(C).
    12. Ming-Kuang Chung & Dau-Jye Lu & Bor-Wen Tsai & Kuei-Tien Chou, 2019. "Assessing Effectiveness of PPGIS on Protected Areas by Governance Quality: A Case Study of Community-Based Monitoring in Wu-Wei-Kang Wildlife Refuge, Taiwan," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    13. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    14. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    15. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    16. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    17. Liu, Ruimiao & Liu, Zhongbing & Xiong, Wei & Zhang, Ling & Zhao, Chengliang & Yin, Yingde, 2024. "Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts," Energy, Elsevier, vol. 288(C).
    18. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    19. Smith, Sarah Lindley & Golden, Abigail & Ramenzoni, Victoria & Zemeckis, Douglas R & Jensen, Olaf P, 2020. "Adaptation and resilience of commercial fishers in the Northeastern United States during the early stages of the COVID-19 pandemic," SocArXiv z3v2h, Center for Open Science.
    20. Felkner, John S. & Lee, Hyun & Shaikh, Sabina & Kolata, Alan & Binford, Michael, 2022. "The interrelated impacts of credit access, market access and forest proximity on livelihood strategies in Cambodia," World Development, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1321-:d:319460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.