IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p845-d312319.html
   My bibliography  Save this article

Factors Affecting Public Willingness to Adopt Renewable Energy Technologies: An Exploratory Analysis

Author

Listed:
  • Anas A. Makki

    (Department of Industrial Engineering, Faculty of Engineering—Rabigh Branch, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ibrahim Mosly

    (Department of Civil Engineering, Faculty of Engineering—Rabigh Branch, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Renewable energy has become an important element of today’s modern technology targeting high-efficiency energy production. As part of its 2030 Vision, Saudi Arabia is aiming to increase its energy production through renewable sources. The purpose of this research study is to explore the factors affecting public willingness to adopt renewable energy technologies in the western region of Saudi Arabia. This was achieved through an extensive literature review of previous studies conducted worldwide and resulted in the extraction of 19 factors that affect public willingness to adopt renewable energy technologies. Following a quantitative research design, random cross-sectional data of 416 participants using the extracted factors were collected via an online questionnaire survey. Following a dimension reduction statistical approach, key components were extracted with exploratory factor analysis using principal component analysis. Five main components clustering the 19 extracted factors were revealed: cost and government regulations and policies, public awareness and local market, environment and public infrastructure, residential building, and renewable energy technology systems. The implications of this research study assist in guiding governments, regulations and policy makers, marketing agencies, and investors to better understand the concerns and enablers of renewable energy technologies adoption from the public perspective.

Suggested Citation

  • Anas A. Makki & Ibrahim Mosly, 2020. "Factors Affecting Public Willingness to Adopt Renewable Energy Technologies: An Exploratory Analysis," Sustainability, MDPI, vol. 12(3), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:845-:d:312319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Ritsuko Ozaki, 2011. "Adopting sustainable innovation: what makes consumers sign up to green electricity?," Business Strategy and the Environment, Wiley Blackwell, vol. 20(1), pages 1-17, January.
    3. Bongsuk Sung & Cui Wen, 2018. "Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market," Energies, MDPI, vol. 11(4), pages 1-18, April.
    4. Mallett, Alexandra, 2007. "Social acceptance of renewable energy innovations: The role of technology cooperation in urban Mexico," Energy Policy, Elsevier, vol. 35(5), pages 2790-2798, May.
    5. Donato Morea & Luigi Antonio Poggi, 2017. "An Innovative Model for the Sustainability of Investments in the Wind Energy Sector: The Use of Green Sukuk in an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 53-60.
    6. Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    7. Djiby Thiam, 2011. "An energy pricing scheme for the diffusion of decentralized renewable technology investment in developing countries," Post-Print hal-01135616, HAL.
    8. van Rijnsoever, Frank J. & Farla, Jacco C.M., 2014. "Identifying and explaining public preferences for the attributes of energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 71-82.
    9. Yoo, James & Ready, Richard C., 2014. "Preference heterogeneity for renewable energy technology," Energy Economics, Elsevier, vol. 42(C), pages 101-114.
    10. Zhu, Bing & Zhang, Wenjun & Du, Jian & Zhou, Wenji & Qiu, Tong & Li, Qiang, 2011. "Adoption of renewable energy technologies (RETs): A survey on rural construction in China," Technology in Society, Elsevier, vol. 33(3), pages 223-230.
    11. Heras-Saizarbitoria, Iñaki & Cilleruelo, Ernesto & Zamanillo, Ibon, 2011. "Public acceptance of renewables and the media: an analysis of the Spanish PV solar experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4685-4696.
    12. Chimres, Nares & Wongwises, Somchai, 2016. "Critical review of the current status of solar energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 198-207.
    13. Thiam, Djiby Racine, 2011. "An energy pricing scheme for the diffusion of decentralized renewable technology investment in developing countries," Energy Policy, Elsevier, vol. 39(7), pages 4284-4297, July.
    14. West, J. & Bailey, I. & Winter, M., 2010. "Renewable energy policy and public perceptions of renewable energy: A cultural theory approach," Energy Policy, Elsevier, vol. 38(10), pages 5739-5748, October.
    15. Shen, Shiran Victoria & Cain, Bruce E. & Hui, Iris, 2019. "Public receptivity in China towards wind energy generators: A survey experimental approach," Energy Policy, Elsevier, vol. 129(C), pages 619-627.
    16. Iskander Tlili, 2015. "Renewable energy in Saudi Arabia: current status and future potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 859-886, August.
    17. Zheng-Xia He & Shi-Chun Xu & Qin-Bin Li & Bin Zhao, 2018. "Factors That Influence Renewable Energy Technological Innovation in China: A Dynamic Panel Approach," Sustainability, MDPI, vol. 10(1), pages 1-30, January.
    18. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena & Braga, Ana Cristina, 2014. "Public opinion on renewable energy technologies in Portugal," Energy, Elsevier, vol. 69(C), pages 39-50.
    19. Düştegör, Dilek & Sultana, Nahid & Felemban, Noor & Al Qahtani, Deemah, 2018. "A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications," Utilities Policy, Elsevier, vol. 50(C), pages 26-39.
    20. Park, Eunil & Ohm, Jay Y., 2014. "Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident," Energy Policy, Elsevier, vol. 65(C), pages 198-211.
    21. Grubb,Michael & Jamasb,Tooraj & Pollitt,Michael G. (ed.), 2008. "Delivering a Low Carbon Electricity System," Cambridge Books, Cambridge University Press, number 9780521888844, January.
    22. Atalay, Yasemin & Biermann, Frank & Kalfagianni, Agni, 2016. "Adoption of renewable energy technologies in oil-rich countries: Explaining policy variation in the Gulf Cooperation Council states," Renewable Energy, Elsevier, vol. 85(C), pages 206-214.
    23. Juaidi, Adel & Montoya, Francisco G. & Gázquez, Jose A. & Manzano-Agugliaro, Francisco, 2016. "An overview of energy balance compared to sustainable energy in United Arab Emirates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1195-1209.
    24. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    25. Henry Kaiser, 1974. "An index of factorial simplicity," Psychometrika, Springer;The Psychometric Society, vol. 39(1), pages 31-36, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swantje Sundt, 2021. "Influence of Attitudes on Willingness to Choose Time-of-Use Electricity Tariffs in Germany. Evidence from Factor Analysis," Energies, MDPI, vol. 14(17), pages 1-20, August.
    2. Nelson de Matos & Marisol B. Correia & José Ramón Saura & Ana Reyes-Menendez & Nuno Baptista, 2020. "Marketing in the Public Sector—Benefits and Barriers: A Bibliometric Study from 1931 to 2020," Social Sciences, MDPI, vol. 9(10), pages 1-22, September.
    3. Bilal Khalid & Mariusz Urbański & Monika Kowalska-Sudyka & Elżbieta Wysłocka & Barbara Piontek, 2021. "Evaluating Consumers’ Adoption of Renewable Energy," Energies, MDPI, vol. 14(21), pages 1-15, November.
    4. Jyoti U. Devkota, 2021. "Forecasting satisfaction of grid electricity to a rural household: examples from Nepal," SN Business & Economics, Springer, vol. 1(1), pages 1-27, January.
    5. Alexander Titov & György Kövér & Katalin Tóth & Géza Gelencsér & Bernadett Horváthné Kovács, 2021. "Acceptance and Potential of Renewable Energy Sources Based on Biomass in Rural Areas of Hungary," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. William Philip Wall & Bilal Khalid & Mariusz Urbański & Michal Kot, 2021. "Factors Influencing Consumer’s Adoption of Renewable Energy," Energies, MDPI, vol. 14(17), pages 1-19, August.
    7. Patrick Rausch & Michał Suchanek, 2021. "Socioeconomic Factors Influencing the Prosumer’s Investment Decision on Solar Power," Energies, MDPI, vol. 14(21), pages 1-10, November.
    8. Steven Lloyd & Tetsuya Nakamura, 2022. "Public Perceptions of Renewable Energy in the Philippines," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    9. Marra, Alessandro & Colantonio, Emiliano, 2023. "On public policies in the energy transition: Evidence on the role of socio-technical regimes for renewable technologies," Energy Economics, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    2. Alsulami, Abdulkarim & Fairbrass, Jenny & Botelho, Tiago & Assadinia, Shahin, 2024. "Renewable energy and innovation in Saudi Arabia: An exploration of factors affecting consumers' intention to adopt Solar PV," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    3. Atalay, Yasemin & Kalfagianni, Agni & Pattberg, Philipp, 2017. "Renewable energy support mechanisms in the Gulf Cooperation Council states: Analyzing the feasibility of feed-in tariffs and auction mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 723-733.
    4. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    5. Yu, H. & Reiner, D. & Chen, H. & Mi, Z., 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Cambridge Working Papers in Economics 1826, Faculty of Economics, University of Cambridge.
    6. Swantje Sundt, 2021. "Influence of Attitudes on Willingness to Choose Time-of-Use Electricity Tariffs in Germany. Evidence from Factor Analysis," Energies, MDPI, vol. 14(17), pages 1-20, August.
    7. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    8. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    9. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    10. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    11. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    12. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    13. Liu, Feng & Lyu, Tao & Pan, Li & Wang, Fei, 2017. "Influencing factors of public support for modern coal-fired power plant projects: An empirical study from China," Energy Policy, Elsevier, vol. 105(C), pages 398-406.
    14. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Store-on grid scheme model for grid-tied solar photovoltaic systems for industrial sector application: Benefits analysis," Renewable Energy, Elsevier, vol. 171(C), pages 1257-1275.
    15. Agnieszka Janik & Adam Ryszko & Marek Szafraniec, 2021. "Determinants of the EU Citizens’ Attitudes towards the European Energy Union Priorities," Energies, MDPI, vol. 14(17), pages 1-32, August.
    16. Monica Castaneda & Sebastian Zapata & Andres Aristizabal, 2018. "Assessing the Effect of Incentive Policies on Residential PV Investments in Colombia," Energies, MDPI, vol. 11(10), pages 1-17, October.
    17. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    18. Cem Keskin & M. Pınar Mengüç, 2018. "On Occupant Behavior and Innovation Studies Towards High Performance Buildings: A Transdisciplinary Approach," Sustainability, MDPI, vol. 10(10), pages 1-33, October.
    19. El-Karmi, Fawwaz Z. & Abu-Shikhah, Nazih M., 2013. "The role of financial incentives in promoting renewable energy in Jordan," Renewable Energy, Elsevier, vol. 57(C), pages 620-625.
    20. Diana A. Londoño-Pulgarín & Francisco Muñoz-Leiva & Esmeralda Crespo-Almendros, 2020. "Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis," Energies, MDPI, vol. 13(19), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:845-:d:312319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.