IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p809-d311825.html
   My bibliography  Save this article

Urban Development Modeling Using Integrated Fuzzy Systems, Ordered Weighted Averaging (OWA), and Geospatial Techniques

Author

Listed:
  • Neda Ghasemkhani

    (Department of Geography and Urban Planning, Islamic Azad University, 1148963537 Tehran, Iran)

  • Saeideh Sahebi Vayghan

    (Department of Remote Sensing and GIS, Kharazmi University, 1571914911 Tehran, Iran)

  • Abolfazl Abdollahi

    (Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Biswajeet Pradhan

    (Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia
    Department of Civil Engineering, Indian Institute of Technology Indore (IITI), Khandwa Road, Simrol, Indore 453552, India)

  • Abdullah Alamri

    (Department of Geology & Geophysics, College of Science, King Saud Univ., P.O. Box 2455, Riyadh 11451, Saudi Arabia)

Abstract

This paper proposes a model to identify the changing of bare grounds into built-up or developed areas. The model is based on the fuzzy system and the Ordered Weighted Averaging (OWA) methods. The proposed model consists of four main sections, which include physical suitability, accessibility, the neighborhood effect, and a calculation of the overall suitability. In the first two parts, physical suitability and accessibility were obtained by defining fuzzy inference systems and applying the required map data associated with each section. However, in order to calculate the neighborhood effect, we used an enrichment factor method and a hybrid method consisting of the enrichment factor with the Few, Half, Most, and Majority quantifiers of the ordered weighted averaging (OWA) method. Finally, the three maps of physical suitability, accessibility, and the neighborhood effect were integrated by the fuzzy system method and the quantifiers of OWA to obtain the overall suitability maps. Then, the areas with high suitability were selected from the overall suitability map to be changed from bare ground into built-up areas. For this purpose, the proposed model was implemented and calibrated in the first period (2004–2010) and was evaluated by being applied to the second period (2010–2016). By comparing the estimated map of changes to the reference data and after the formation of the error matrix, it was determined that the OWA-Majority method has the best estimation compared to those of the other methods. Finally, the total accuracy and the Kappa coefficient for the OWA-Majority method in the second period were 98.98% and 98.98%, respectively, indicating this method’s high accuracy in predicting changes. In addition, the results were compared with those of other studies, which showed the effectiveness of the suggested method for urban development modeling.

Suggested Citation

  • Neda Ghasemkhani & Saeideh Sahebi Vayghan & Abolfazl Abdollahi & Biswajeet Pradhan & Abdullah Alamri, 2020. "Urban Development Modeling Using Integrated Fuzzy Systems, Ordered Weighted Averaging (OWA), and Geospatial Techniques," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:809-:d:311825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Criado & Antonio Martínez-Graña & Fernando Santos-Francés & Sergio Veleda & Caridad Zazo, 2017. "Multi-Criteria Analyses of Urban Planning for City Expansion: A Case Study of Zamora, Spain," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    2. K C Clarke & S Hoppen & L Gaydos, 1997. "A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area," Environment and Planning B, , vol. 24(2), pages 247-261, April.
    3. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 1-23, January.
    4. Abolfazl Abdollahi & Biswajeet Pradhan & Nagesh Shukla, 2019. "Extraction of road features from UAV images using a novel level set segmentation approach," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 23(3), pages 391-405, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    2. Bahare Moradi & Rojin Akbari & Seyedeh Reyhaneh Taghavi & Farnaz Fardad & Abdulsalam Esmailzadeh & Mohammad Zia Ahmadi & Sina Attarroshan & Fatemeh Nickravesh & Jamal Jokar Arsanjani & Mehdi Amirkhani, 2023. "A Scenario-Based Spatial Multi-Criteria Decision-Making System for Urban Environment Quality Assessment: Case Study of Tehran," Land, MDPI, vol. 12(9), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    3. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    4. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    5. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    6. Eda Ustaoglu & Brendan Williams & Laura O. Petrov & Harutyun Shahumyan & Hedwig Van Delden, 2017. "Developing and Assessing Alternative Land-Use Scenarios from the MOLAND Model: A Scenario-Based Impact Analysis Approach for the Evaluation of Rapid Rail Provisions and Urban Development in the Greate," Sustainability, MDPI, vol. 10(1), pages 1-34, December.
    7. Zolfaghary, Parvin & Zakerinia, Mahdi & Kazemi, Hossein, 2021. "A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS)," Agricultural Water Management, Elsevier, vol. 243(C).
    8. A’kif AL-FUGARA & Abdel Rahman AL-SHABEEB & Yahya AL-SHAWABKEH & Hani AL-AMOUSH & Rida AL-ADAMAT, 2018. "Simulation And Prediction Of Urban Spatial Expansion In Highly Vibrant Cities Using The Sleuth Model: A Case Study Of Amman Metropolitan, Jordan," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(1), pages 37-56, February.
    9. Ahmed Hassan & Muhammad G Almatar & Magdy Torab & Casey D Allen, 2020. "Environmental Urban Plan for Failaka Island, Kuwait: A Study in Urban Geomorphology," Sustainability, MDPI, vol. 12(17), pages 1-21, September.
    10. Alireza Salahi Moghadam & Ali Soltani & Bruno Parolin, 2018. "Transforming and changing urban centres: the experience of Sydney from 1981 to 2006," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 37-53, March.
    11. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    12. An Thinh Nguyen & Van Hanh Ta & Van Hong Nguyen & Anh Tuan Pham & Mélie Monnerat & Luc Hens, 2022. "Shifting challenges for Cinnamomum cassia production in the mountains of Northern Vietnam: spatial analysis combined with semi-structured interviews," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7213-7235, May.
    13. Timuçin Everest, 2021. "Suitable site selection for pistachio (Pistacia vera) by using GIS and multi-criteria decision analyses (a case study in Turkey)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7686-7705, May.
    14. Subham Roy & Nimai Singha & Arghadeep Bose & Debanjan Basak & Indrajit Roy Chowdhury, 2023. "Multi-influencing factor (MIF) and RS–GIS-based determination of agriculture site suitability for achieving sustainable development of Sub-Himalayan region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7101-7133, July.
    15. Jaekyung Lee & Galen Newman & Yunmi Park, 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    16. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    17. Acevedo, Miguel A. & Marcano, Mariano & Fletcher, Robert J., 2012. "A diffusive logistic growth model to describe forest recovery," Ecological Modelling, Elsevier, vol. 244(C), pages 13-19.
    18. Dalibor Bartoněk & Jiří Bureš & Otakar Švábenský, 2020. "Evaluation of Influence of the Environment on the Choice of Buildings for Residential Living," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    19. Wickramasuriya, Rohan Chandralal & Bregt, Arnold K. & van Delden, Hedwig & Hagen-Zanker, Alex, 2009. "The dynamics of shifting cultivation captured in an extended Constrained Cellular Automata land use model," Ecological Modelling, Elsevier, vol. 220(18), pages 2302-2309.
    20. Mukund Pratap Singh & Pitam Singh & Priyamvada Singh, 2019. "Fuzzy AHP-based multi-criteria decision-making analysis for route alignment planning using geographic information system (GIS)," Journal of Geographical Systems, Springer, vol. 21(3), pages 395-432, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:809-:d:311825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.