IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420314037.html
   My bibliography  Save this article

A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS)

Author

Listed:
  • Zolfaghary, Parvin
  • Zakerinia, Mahdi
  • Kazemi, Hossein

Abstract

The limited water resources have forced the use of unconventional water such as urban wastewater in agriculture. However, using these water resources requires the consideration of their impact on water, soil, human and environment. Inthis study,the suitability of using urban treated wastewater as irrigation water has been investigated using geographic information system (GIS) and multi criteria decision making (MCDM).To do this, the decision-making criteria were extracted after a literature review. Irrigation water availability, techno-economic distance from the wastewater treatment plant, and suitability of farmlands for crop cultivation were considered as techno-economic sub-criteria while the quality of irrigation water, soil, and crop as well as aquifer vulnerability were considered as environmental sub-criteria in the decision structure. The data of two wastewater treatment plants, i.e., Bandar Gaz and Kordkoy located in west of Golestan province(Iran) were used to implement the model for 10 common crops. Topography, land use, soil depth, and technical allowable distance were considered as limiting factors in urban wastewater use in the area. After the preparation of the base maps,appropriate areas were determined for model implementation. The maps associated with the criteria were prepared in the GIS software environment and then classified according to the available standards. Analytic hierarchy process (AHP) was used to calculate the weight of the criteria. The results of the sensitivity analysis showed the high sensitivity of aquifer vulnerability and microbial contamination. The comparison of the suitability of cultivation using the treated wastewater revealed the better performance of Bandar Gaz plant in some effective criteria such as aquifer vulnerability, nitrate contamination burden, and suitability for crop cultivation.

Suggested Citation

  • Zolfaghary, Parvin & Zakerinia, Mahdi & Kazemi, Hossein, 2021. "A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS)," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420314037
    DOI: 10.1016/j.agwat.2020.106490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420314037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilcox, L. V., 1948. "The Quality of Water for Irrigation Use," Technical Bulletins 170282, United States Department of Agriculture, Economic Research Service.
    2. Neji, Hella Ben Brahim & Turki, Sami Yassine, 2015. "GIS – based multicriteria decision analysis for the delimitation of an agricultural perimeter irrigated with treated wastewater," Agricultural Water Management, Elsevier, vol. 162(C), pages 78-86.
    3. Muyen, Zahida & Moore, Graham A. & Wrigley, Roger J., 2011. "Soil salinity and sodicity effects of wastewater irrigation in South East Australia," Agricultural Water Management, Elsevier, vol. 99(1), pages 33-41.
    4. Jacek Malczewski, 2010. "Multiple Criteria Decision Analysis and Geographic Information Systems," International Series in Operations Research & Management Science, in: Matthias Ehrgott & José Rui Figueira & Salvatore Greco (ed.), Trends in Multiple Criteria Decision Analysis, chapter 0, pages 369-395, Springer.
    5. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    6. Piotr Sulewski & Anna Kłoczko-Gajewska & Wojciech Sroka, 2018. "Relations between Agri-Environmental, Economic and Social Dimensions of Farms’ Sustainability," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    7. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 1-23, January.
    8. Sulewski, Piotr & Kłoczko-Gajewska, Anna, 2018. "Relations between agri-environmental, economic and social dimensions of farm sustainability," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276202, European Association of Agricultural Economists.
    9. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    10. K. Rezaei-Moghaddam & E. Karami, 2008. "A multiple criteria evaluation of sustainable agricultural development models using AHP," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(4), pages 407-426, August.
    11. Andrews, D.M. & Robb, T. & Elliott, H. & Watson, J.E., 2016. "Impact of long-term wastewater irrigation on the physicochemical properties of humid region soils: “The Living Filter” site case study," Agricultural Water Management, Elsevier, vol. 178(C), pages 239-247.
    12. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Amal Aldababseh & Marouane Temimi & Praveen Maghelal & Oliver Branch & Volker Wulfmeyer, 2018. "Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment," Sustainability, MDPI, vol. 10(3), pages 1-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosar Ebrahimzadeh Azbari & Parisa-Sadat Ashofteh & Parvin Golfam & Hugo A. Loáiciga, 2022. "Ranking of wastewater reuse allocation alternatives using a variance-based weighted aggregated sum product assessment method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2497-2513, February.
    2. Burak, Selmin & Samanlioglu, Funda & Ulker, Duygu & Kup, Eyup Tolunay, 2024. "Ranking willingness to reuse water in cotton irrigation with hybrid MCDM methods: Soke plain case study," Agricultural Water Management, Elsevier, vol. 301(C).
    3. Nafiseh Bahrami & Mohammad Reza Nikoo & Ghazi Al-Rawas & Khalifa Al-Jabri & Amir H. Gandomi, 2023. "Optimal Treated Wastewater Allocation Among Stakeholders Based on an Agent-based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 135-156, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ogawa, Keishi & Garrod, Guy & Yagi, Hironori, 2023. "Sustainability strategies and stakeholder management for upland farming," Land Use Policy, Elsevier, vol. 131(C).
    2. Eugenio Cejudo-García & Marilena Labianca & Francisco Navarro-Valverde & Angelo Belliggiano, 2022. "Protected Natural Spaces, Agrarian Specialization and the Survival of Rural Territories: The Cases of Sierra Nevada (Spain) and Alta Murgia (Italy)," Land, MDPI, vol. 11(8), pages 1-30, July.
    3. Hania Arif & Mehak Masood & Tahir Mahmood & Muneeb Aamie, 2021. "Conservation of Biodiversity & the Agriculture Sector," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(3), pages 72-76, September.
    4. Minjie Li & Jian Wang & Yihui Chen, 2019. "Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    5. Claudio Liberati & Concetta Cardillo & Antonella Di Fonzo, 2021. "Sustainability and competitiveness in farms: An evidence of Lazio region agriculture through FADN data analysis," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-22.
    6. Jiayu Lu & Hui Wang & Chuanwang Hu, 2022. "Changes in Physicochemical Properties of Typical Subtropical Soils under Different Treated Domestic Wastewater Irrigation Modes," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    7. Dwi Ratna Hidayati & Elena Garnevska & Paul Childerhouse, 2021. "Sustainable Agrifood Value Chain—Transformation in Developing Countries," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    8. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    9. Sipan Li & Qunxi Gong & Shaolei Yang, 2019. "A Sustainable, Regional Agricultural Development Measurement System Based on Dissipative Structure Theory and the Entropy Weight Method: A Case Study in Chengdu, China," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    10. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    11. Isaac Zipori & Ran Erel & Uri Yermiyahu & Alon Ben-Gal & Arnon Dag, 2020. "Sustainable Management of Olive Orchard Nutrition: A Review," Agriculture, MDPI, vol. 10(1), pages 1-21, January.
    12. Olha Kravchenko & Anatolii Kucher & Maria Hełdak & Lesia Kucher & Joanna Wysmułek, 2020. "Socio-Economic Transformations in Ukraine towards the Sustainable Development of Agriculture," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    13. Chojnacka, K. & Witek-Krowiak, A. & Moustakas, K. & Skrzypczak, D. & Mikula, K. & Loizidou, M., 2020. "A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Kathrin Specht & Felix Zoll & Henrike Schümann & Julia Bela & Julia Kachel & Marcel Robischon, 2019. "How Will We Eat and Produce in the Cities of the Future? From Edible Insects to Vertical Farming—A Study on the Perception and Acceptability of New Approaches," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    16. Ivana Kravčáková Vozárová & Rastislav Kotulič & Roman Vavrek, 2020. "Assessing Impacts of CAP Subsidies on Financial Performance of Enterprises in Slovak Republic," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    17. Beadle, Brian, 2023. "The design and application of an agricultural sustainability index using item response theory," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 278112, March.
    18. Amal Aldababseh & Marouane Temimi & Praveen Maghelal & Oliver Branch & Volker Wulfmeyer, 2018. "Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment," Sustainability, MDPI, vol. 10(3), pages 1-33, March.
    19. Chaganti, Vijayasatya N. & Ganjegunte, Girisha & Niu, Genhua & Ulery, April & Flynn, Robert & Enciso, Juan M. & Meki, Manyowa N. & Kiniry, James R., 2020. "Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality," Agricultural Water Management, Elsevier, vol. 228(C).
    20. Nimrod Luz, 2023. "The Treacherous Road to Sustainable Agriculture: Lessons from Israeli Farmers and the Need to Upscale the Debate," Sustainability, MDPI, vol. 15(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420314037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.