IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p534-d307482.html
   My bibliography  Save this article

Evaluation Model and Strategy for Selecting Carbon Reduction Technology for Campus Buildings in Primary and Middle Schools in the Yangtze River Delta Region, China

Author

Listed:
  • Xiaoyu Luo

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China)

  • Cong Ma

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China)

  • Jian Ge

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China)

Abstract

Cutting down global warming and reducing greenhouse gas emissions such as carbon dioxide are important global targets. Accounting for a third of global energy consumption, the building construction industry is an important target for carbon reduction. Campus buildings, of which there are a large number in China, differ from other building types, as they have noteworthy energy-use characteristics and technology selection requirements. This study identifies the carbon reduction technologies in Chinese primary and middle schools commonly used for energy and water conservation, and then evaluates their performance according to degrees of carbon reduction, maturity and economic suitability. Based on these three indicators, the study creates a three-dimensional evaluation model for the different technologies examined in order to obtain a selection ranking. The study offers guidance for project practice in the construction of primary and middle schools and helps to promote the development of the low-carbon campus.

Suggested Citation

  • Xiaoyu Luo & Cong Ma & Jian Ge, 2020. "Evaluation Model and Strategy for Selecting Carbon Reduction Technology for Campus Buildings in Primary and Middle Schools in the Yangtze River Delta Region, China," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:534-:d:307482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    2. Koo, Choongwan & Kim, Hyunjoong & Hong, Taehoon, 2014. "Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities," Energy Policy, Elsevier, vol. 73(C), pages 356-367.
    3. Kuramochi, Takeshi & Wakiyama, Takako & Kuriyama, Akihisa, 2017. "Assessment of national greenhouse gas mitigation targets for 2030 through meta-analysis of bottom-up energy and emission scenarios: A case of Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 924-944.
    4. Wang, Huan & Chen, Wenying, 2019. "Modeling of energy transformation pathways under current policies, NDCs and enhanced NDCs to achieve 2-degree target," Applied Energy, Elsevier, vol. 250(C), pages 549-557.
    5. Huang, Wei Ming & Lee, Grace W.M., 2009. "Feasibility analysis of GHG reduction target: Lessons from Taiwan's energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2621-2628, December.
    6. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    7. Saroglou, Tanya & Theodosiou, Theodoros & Givoni, Baruch & Meir, Isaac A., 2019. "A study of different envelope scenarios towards low carbon high-rise buildings in the Mediterranean climate - can DSF be part of the solution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonggeon Lee & Sungho Tae & Rakhyun Kim, 2018. "A Study on the Analysis of CO 2 Emissions of Apartment Housing in the Construction Process," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    2. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    3. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    4. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Chou, Kuei Tien & Liou, Hwa Meei, 2012. "Analysis on energy intensive industries under Taiwan's climate change policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2631-2642.
    6. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    7. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    8. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    9. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    10. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    11. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    12. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    13. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    14. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    15. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    16. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    17. Maria Anna Cusenza & Teresa Maria Gulotta & Marina Mistretta & Maurizio Cellura, 2021. "Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings," Energies, MDPI, vol. 14(12), pages 1-21, June.
    18. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    19. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    20. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:534-:d:307482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.