IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp924-944.html
   My bibliography  Save this article

Assessment of national greenhouse gas mitigation targets for 2030 through meta-analysis of bottom-up energy and emission scenarios: A case of Japan

Author

Listed:
  • Kuramochi, Takeshi
  • Wakiyama, Takako
  • Kuriyama, Akihisa

Abstract

This study conducted a comparative assessment and a meta-analysis of 48 greenhouse gas (GHG) emissions reduction scenarios based on bottom-up energy system analyses for 2030 reported in seven studies published between 2011 and 2015 to obtain insights into the ambition level of Japan's official mitigation target for 2030. First, the scenarios were categorised into four mitigation effort levels and assessed the GHG emissions range (excluding land use, land use change and forestry: LULUCF) as well as key underlying energy-related indicators for each effort level category. Second, a multiple regression equation was derived and applied to project GHG emissions with selected energy-related explanatory variables. Using the derived regression equation, we calculated the levels of low-carbon energy supply and end-use energy savings required to achieve different levels of GHG mitigation.

Suggested Citation

  • Kuramochi, Takeshi & Wakiyama, Takako & Kuriyama, Akihisa, 2017. "Assessment of national greenhouse gas mitigation targets for 2030 through meta-analysis of bottom-up energy and emission scenarios: A case of Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 924-944.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:924-944
    DOI: 10.1016/j.rser.2016.12.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niklas H�hne & Michel den Elzen & Donovan Escalante, 2014. "Regional GHG reduction targets based on effort sharing: a comparison of studies," Climate Policy, Taylor & Francis Journals, vol. 14(1), pages 122-147, January.
    2. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    3. Takase, Kae & Suzuki, Tatsujiro, 2011. "The Japanese energy sector: Current situation, and future paths," Energy Policy, Elsevier, vol. 39(11), pages 6731-6744.
    4. Su, Xuanming & Zhou, Weisheng & Sun, Faming & Nakagami, Ken'Ichi, 2014. "Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030," Energy, Elsevier, vol. 66(C), pages 90-97.
    5. Kuramochi, Takeshi, 2015. "Review of energy and climate policy developments in Japan before and after Fukushima," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1320-1332.
    6. Homma, Takashi & Akimoto, Keigo, 2013. "Analysis of Japan's energy and environment strategy after the Fukushima nuclear plant accident," Energy Policy, Elsevier, vol. 62(C), pages 1216-1225.
    7. Moe, Espen, 2012. "Vested interests, energy efficiency and renewables in Japan," Energy Policy, Elsevier, vol. 40(C), pages 260-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Luo & Cong Ma & Jian Ge, 2020. "Evaluation Model and Strategy for Selecting Carbon Reduction Technology for Campus Buildings in Primary and Middle Schools in the Yangtze River Delta Region, China," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    2. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    4. Kuriyama, Akihisa & Tamura, Kentaro & Kuramochi, Takeshi, 2019. "Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan's NDC," Energy Policy, Elsevier, vol. 130(C), pages 328-340.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
    2. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    3. Trencher, Gregory & Healy, Noel & Hasegawa, Koichi & Asuka, Jusen, 2019. "Discursive resistance to phasing out coal-fired electricity: Narratives in Japan's coal regime," Energy Policy, Elsevier, vol. 132(C), pages 782-796.
    4. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    5. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.
    6. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
    7. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    8. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    9. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    10. Alan Sanstad & Hans Johnson & Noah Goldstein & Guido Franco, 2011. "Projecting long-run socioeconomic and demographic trends in California under the SRES A2 and B1 scenarios," Climatic Change, Springer, vol. 109(1), pages 21-42, December.
    11. Youngho CHANG & Yanfei LI, 2014. "Non-renewable Resources in Asian Economies: Perspective of Availability, Applicability Acceptability, and Affordability," Working Papers DP-2014-04, Economic Research Institute for ASEAN and East Asia (ERIA).
    12. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    13. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    14. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    15. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    16. Joseph E. Aldy & William A. Pizer & Keigo Akimoto, 2017. "Comparing emissions mitigation efforts across countries," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 501-515, May.
    17. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    18. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    19. Carolyn Fischer & Alan K. Fox, 2007. "Output-Based Allocation of Emissions Permits for Mitigating Tax and Trade Interactions," Land Economics, University of Wisconsin Press, vol. 83(4), pages 575-599.
    20. Zhang, Jiaming & Zou, Yang & Xiang, Yitian & Guo, Songlin, 2023. "Climate change and Japanese economic policy uncertainty: Asymmetric analysis," Finance Research Letters, Elsevier, vol. 56(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:924-944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.