IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p477-d306395.html
   My bibliography  Save this article

Spatiotemporal Trends and Attribution of Drought across China from 1901–2100

Author

Listed:
  • Yongxia Ding

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710169, China)

  • Shouzhang Peng

    (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China)

Abstract

Investigating long-term drought trends is of great importance in coping with the adverse effects of global warming. However, little attention has been focused on studying the detailed spatial variability and attribution of drought variation in China. In this study, we first generated a 1 km resolution monthly climate dataset for the period 1901–2100 across China using the delta spatial downscaling method to assess the variability of the Standardized Precipitation Evaporation Index (SPEI). We then developed a simple approach to quantifying the contributions of water supply (precipitation) and demand (potential evapotranspiration, PET) on SPEI variability, according to the meaning of the differentiating SPEI equation. The results indicated that the delta framework could accurately downscale and correct low-spatial-resolution monthly temperatures and precipitation from the Climatic Research Unit and general circulation models (GCMs). Of the 27 GCMs analyzed, the BNU-ESM, CESM1-CAM5, and GFDL-ESM2M were found to be the most accurate in modeling future temperatures and precipitation. We also found that, compared with the past (1901–2017), the climate in the future (2018–2100) will tend toward significant droughts, although both periods showed a high spatial heterogeneity across China. Moreover, the proportion of areas with significantly decreasing SPEI trends was far greater than the proportion of those with increasing trends in most cases, especially for northwestern and northern China. Finally, the proposed approach to quantifying precipitation and PET contributions performed well according to logical evaluations. The percentage contributions of precipitation and PET on SPEI variability varied with study periods, representative concentration pathway scenarios, trend directions, and geographic spaces. In the past, PET contributions for significant downward trends and precipitation contributions for significantly upward trends accounted for 95% and 72%, while their future contributions were 57 ± 22%–149 ± 20% and 95 ± 27%–190 ± 58%, respectively. Overall, our results provide detailed insights for planning flexible adaptation and mitigation strategies to cope with the adverse effects of climate drought across China.

Suggested Citation

  • Yongxia Ding & Shouzhang Peng, 2020. "Spatiotemporal Trends and Attribution of Drought across China from 1901–2100," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:477-:d:306395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Li & Xuemei Li & Dongliang Luo & Yi He & Fangfang Chen & Bo Zhang & Qiyong Qin, 2021. "Spatiotemporal Pattern of Vegetation Ecology Quality and Its Response to Climate Change between 2000–2017 in China," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Zhen Chen & Xiaohong Gao & Zhifeng Liu & Kelong Chen, 2023. "Spatiotemporal Variation of Soil Erosion Characteristics in the Qinghai Lake Basin Based on the InVEST Model," IJERPH, MDPI, vol. 20(6), pages 1-21, March.
    3. Azimatjan Mamattursun & Han Yang & Kamila Ablikim & Nurbiya Obulhasan, 2022. "Spatiotemporal Evolution and Driving Forces of Vegetation Cover in the Urumqi River Basin," IJERPH, MDPI, vol. 19(22), pages 1-25, November.
    4. Xuan Guo & Qingwen Min, 2023. "Analysis of Landscape Patterns Changes and Driving Factors of the Guangdong Chaoan Fenghuangdancong Tea Cultural System in China," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    5. Monia Santini & Sergio Noce & Marco Mancini & Luca Caporaso, 2023. "A Global Multiscale SPEI Dataset under an Ensemble Approach," Data, MDPI, vol. 8(2), pages 1-14, February.
    6. Jincai Zhao & Qianqian Liu & Heli Lu & Zheng Wang & Ke Zhang & Pan Wang, 2021. "Future droughts in China using the standardized precipitation evapotranspiration index (SPEI) under multi-spatial scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 615-636, October.
    7. Ruixin Zhang & Yuke Zhou & Tianyang Hu & Wenbin Sun & Shuhui Zhang & Jiapei Wu & Han Wang, 2023. "Detecting the Spatiotemporal Variation of Vegetation Phenology in Northeastern China Based on MODIS NDVI and Solar-Induced Chlorophyll Fluorescence Dataset," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    8. Anning Liang & Dongmei Yan & Jun Yan & Yayang Lu & Xiaowei Wang & Wanrong Wu, 2023. "A Comprehensive Assessment of Sustainable Development of Urbanization in Hainan Island Using Remote Sensing Products and Statistical Data," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    9. Mengyao Ci & Lu Ye & Changhao Liao & Li Yao & Zhiqin Tu & Qiao Xing & Xuguang Tang & Zhi Ding, 2023. "Long-Term Dynamics of Ecosystem Services and Their Influencing Factors in Ecologically Fragile Southwest China," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    10. Xi Kan & Xu Liu & Zhou Zhou & Yonghong Zhang & Linglong Zhu & Kenny Thiam Choy Lim Kam Sian & Qi Liu, 2023. "Analysis of Spatiotemporal Variation and Influencing Factors of PM 2.5 in China Based on Multisource Data," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    11. Huang, Wenhuan & Wang, Hailong, 2021. "Drought and intensified agriculture enhanced vegetation growth in the central Pearl River Basin of China," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    4. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    5. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    6. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    7. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    8. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    11. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    12. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    13. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    14. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    15. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    16. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    17. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.
    18. Cao, Meng & Chen, Min & Liu, Ji & Liu, Yanli, 2022. "Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.
    20. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:477-:d:306395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.