IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i7p2605-2616.html
   My bibliography  Save this article

Comparing measures of model selection for penalized splines in Cox models

Author

Listed:
  • Malloy, Elizabeth J.
  • Spiegelman, Donna
  • Eisen, Ellen A.

Abstract

This article presents an application and a simulation study of model fit criteria for selecting the optimal degree of smoothness for penalized splines in Cox models. The criteria considered were the Akaike information criterion, the corrected AIC, two formulations of the Bayesian information criterion, and a generalized cross-validation method. The estimated curves selected by the five methods were compared to each other in a study of rectal cancer mortality in autoworkers. In the stimulation study, we estimated the fit of the penalized spline models in six exposure-response scenarios, using the five model fit criteria. The methods were compared on the basis of a mean squared error score and the power and size of hypothesis tests for any effect and for detecting nonlinearity. All comparisons were made across a range in the total sample size and number of cases.

Suggested Citation

  • Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2605-2616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00578-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Thomas C. M., 2003. "Smoothing parameter selection for smoothing splines: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 139-148, February.
    2. Hollander, Norbert & Schumacher, Martin, 2006. "Estimating the functional form of a continuous covariate's effect on survival time," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1131-1151, February.
    3. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    4. Chris T. Volinsky & Adrian E. Raftery, 2000. "Bayesian Information Criterion for Censored Survival Models," Biometrics, The International Biometric Society, vol. 56(1), pages 256-262, March.
    5. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Young-Ju, 2011. "A comparative study of nonparametric estimation in Weibull regression: A penalized likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1884-1896, April.
    2. Donoghoe Mark W. & Marschner Ian C., 2015. "Flexible Regression Models for Rate Differences, Risk Differences and Relative Risks," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 91-108, May.
    3. Zhengnan Huang & Hongjiu Zhang & Jonathan Boss & Stephen A Goutman & Bhramar Mukherjee & Ivo D Dinov & Yuanfang Guan & for the Pooled Resource Open-Access ALS Clinical Trials Consortium, 2017. "Complete hazard ranking to analyze right-censored data: An ALS survival study," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Dongik & Oh, Hee-Seok, 2011. "Enhancement of spatially adaptive smoothing splines via parameterization of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1029-1040, February.
    2. Liang, Hua & Zou, Guohua, 2008. "Improved AIC selection strategy for survival analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2538-2548, January.
    3. Marc Aerts & Niel Hens & Jeffrey Simonoff, 2010. "Model selection in regression based on pre-smoothing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1455-1472.
    4. Lee, Thomas C. M., 2004. "Improved smoothing spline regression by combining estimates of different smoothness," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 133-140, April.
    5. Kaatje Bollaerts & Marc Aerts & Christel Faes & Koen Grijspeerdt & Jeroen Dewulf & Koen Mintiens, 2008. "Human Salmonellosis: Estimation of Dose‐Illness from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 427-440, April.
    6. Eduardo L. Montoya, 2020. "On the Number of Independent Pieces of Information in a Functional Linear Model with a Scalar Response," Stats, MDPI, vol. 3(4), pages 1-16, November.
    7. Kim, Young-Ju, 2011. "A comparative study of nonparametric estimation in Weibull regression: A penalized likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1884-1896, April.
    8. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    9. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    10. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    11. Hünermund, Paul & Czarnitzki, Dirk, 2019. "Estimating the causal effect of R&D subsidies in a pan-European program," Research Policy, Elsevier, vol. 48(1), pages 115-124.
    12. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    13. Proto, Eugenio & Rustichini, Aldo, 2015. "Life satisfaction, income and personality," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 17-32.
    14. Marcelo Cajias & Philipp Freudenreich & Anna Heller & Wolfgang Schaefers, 2018. "Censored Quantile Regressions and the Determinants of Real Estate Liquidity," ERES eres2018_203, European Real Estate Society (ERES).
    15. Karimu, Amin & Brännlund, Runar, 2013. "Functional form and aggregate energy demand elasticities: A nonparametric panel approach for 17 OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 19-27.
    16. Pregaldini, Damiano & Backes-Gellner, Uschi & Eisenkopf, Gerald, 2020. "Girls’ preferences for STEM and the effects of classroom gender composition: New evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 102-123.
    17. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    18. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    19. Gonzalo García-Donato & María Eugenia Castellanos & Alicia Quirós, 2021. "Bayesian Variable Selection with Applications in Health Sciences," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    20. Paul Hünermund & Dirk Czarnitzki, 2016. "Estimating the local average treatment effect of R&D subsidies in a pan-European program," Working Papers of Department of Management, Strategy and Innovation, Leuven 541177, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2605-2616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.