IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8722-d432214.html
   My bibliography  Save this article

Multi-Species Assessment of Injury, Mortality, and Physical Conditions during Downstream Passage through a Large Archimedes Hydrodynamic Screw (Albert Canal, Belgium)

Author

Listed:
  • Ine S. Pauwels

    (Research Institute for Nature and Forest, Team Aquatic Management, Havenlaan 88/bus 73, 1000 Brussels, Belgium)

  • Raf Baeyens

    (Research Institute for Nature and Forest, Team Aquatic Management, Havenlaan 88/bus 73, 1000 Brussels, Belgium)

  • Gert Toming

    (Centre for Biorobotics, Department of Computer Systems, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Matthias Schneider

    (SJE Ecohydraulic Engineering GmbH, Viereichenweg 12, D-70569 Stuttgart (Vaihingen), Germany)

  • David Buysse

    (Research Institute for Nature and Forest, Team Aquatic Management, Havenlaan 88/bus 73, 1000 Brussels, Belgium)

  • Johan Coeck

    (Research Institute for Nature and Forest, Team Aquatic Management, Havenlaan 88/bus 73, 1000 Brussels, Belgium)

  • Jeffrey A. Tuhtan

    (Centre for Biorobotics, Department of Computer Systems, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

Abstract

Fish passing downstream through hydraulic structures and turbines may be exposed to an elevated risk of injury and mortality. The majority of live fish studies are single-species laboratory investigations and field studies of Kaplan turbines, with a limited number of studies in Francis and screw turbines. In addition to these studies, the physical conditions during turbine passage can be directly measured using passive sensors. In this study, we investigate the multispecies risk of injury and mortality during downstream passage through a large Archimedes hydrodynamic screw for bream ( Abramis brama ), eel ( Anguilla anguilla ), and roach ( Rutilus rutilus ) in conjunction with passive sensors that record the pressure, acceleration, and rate of rotation. This work proposes several new metrics to assess downstream passage including the times and durations of impact events, the kinetic energies of translation and rotation, and the pressure gradient. The major findings of this work are three-fold: (1) Significant differences in injury and mortality were observed between the three investigated species with 37% mortality for bream, 19% for roach, and 3% for eel on average. (2) The operational scenario was found to be significant only for a limited number of species-specific injuries and mortality rates. (3) In contrast to studies in Kaplan turbines, the sensor data revealed highly chaotic physical conditions in the Archimedes hydrodynamic screw, showing little difference in the physical metrics between operational scenarios.

Suggested Citation

  • Ine S. Pauwels & Raf Baeyens & Gert Toming & Matthias Schneider & David Buysse & Johan Coeck & Jeffrey A. Tuhtan, 2020. "Multi-Species Assessment of Injury, Mortality, and Physical Conditions during Downstream Passage through a Large Archimedes Hydrodynamic Screw (Albert Canal, Belgium)," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8722-:d:432214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fu, Tao & Deng, Zhiqun Daniel & Duncan, Joanne P. & Zhou, Daqing & Carlson, Thomas J. & Johnson, Gary E. & Hou, Hongfei, 2016. "Assessing hydraulic conditions through Francis turbines using an autonomous sensor device," Renewable Energy, Elsevier, vol. 99(C), pages 1244-1252.
    2. Waters, Shaun & Aggidis, George A., 2015. "Over 2000 years in review: Revival of the Archimedes Screw from Pump to Turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 497-505.
    3. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erinofiardi Erinofiardi & Ravi Koirala & Nirajan Shiwakoti & Abhijit Date, 2022. "Sustainable Power Generation Using Archimedean Screw Turbine: Influence of Blade Number on Flow and Performance," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    2. Arash YoosefDoost & William David Lubitz, 2021. "Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry," Energies, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    2. Arash YoosefDoost & William David Lubitz, 2020. "Archimedes Screw Turbines: A Sustainable Development Solution for Green and Renewable Energy Generation—A Review of Potential and Design Procedures," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    3. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Linda Vikström & Kjell Leonardsson & Johan Leander & Samuel Shry & Olle Calles & Gustav Hellström, 2020. "Validation of Francis–Kaplan Turbine Blade Strike Models for Adult and Juvenile Atlantic Salmon (Salmo Salar, L.) and Anadromous Brown Trout (Salmo Trutta, L.) Passing High Head Turbines," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    5. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    6. Ludovic Cassan & Guilhem Dellinger & Pascal Maussion & Nicolas Dellinger, 2021. "Hydrostatic Pressure Wheel for Regulation of Open Channel Networks and for the Energy Supply of Isolated Sites," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    7. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    8. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    9. Martinez, Jayson J. & Deng, Zhiqun Daniel & Mueller, Robert & Titzler, Scott, 2020. "In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane," Applied Energy, Elsevier, vol. 276(C).
    10. Nishi, Yasuyuki & Mori, Nozomi & Yamada, Naoki & Inagaki, Terumi, 2022. "Study on the design method for axial flow runner that combines design of experiments, response surface method, and optimization method to one-dimensional design method," Renewable Energy, Elsevier, vol. 185(C), pages 96-110.
    11. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Manan, Zainuddin Abd, 2022. "Optimising renewable energy at the eco-industrial park: A mathematical modelling approach," Energy, Elsevier, vol. 261(PB).
    12. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    13. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    14. Klopries, Elena-Maria & Schüttrumpf, Holger, 2020. "Mortality assessment for adult European eels (Anguilla Anguilla) during turbine passage using CFD modelling," Renewable Energy, Elsevier, vol. 147(P1), pages 1481-1490.
    15. Hansen, Carly & Musa, Mirko & Sasthav, Colin & DeNeale, Scott, 2021. "Hydropower development potential at non-powered dams: Data needs and research gaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.
    17. Emanuele Quaranta & Manuel Bonjean & Damiano Cuvato & Christophe Nicolet & Matthieu Dreyer & Anthony Gaspoz & Samuel Rey-Mermet & Bruno Boulicaut & Luigi Pratalata & Marco Pinelli & Giuseppe Tomaselli, 2020. "Hydropower Case Study Collection: Innovative Low Head and Ecologically Improved Turbines, Hydropower in Existing Infrastructures, Hydropeaking Reduction, Digitalization and Governing Systems," Sustainability, MDPI, vol. 12(21), pages 1-78, October.
    18. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    19. Ansorena Ruiz, R. & de Vilder, L.H. & Prasasti, E.B. & Aouad, M. & De Luca, A. & Geisseler, B. & Terheiden, K. & Scanu, S. & Miccoli, A. & Roeber, V. & Marence, M. & Moll, R. & Bricker, J.D. & Goseber, 2022. "Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Hongfei Hou & Zhiqun Daniel Deng & Jayson J. Martinez & Tao Fu & Joanne P. Duncan & Gary E. Johnson & Jun Lu & John R. Skalski & Richard L. Townsend & Li Tan, 2018. "A Hydropower Biological Evaluation Toolset (HBET) for Characterizing Hydraulic Conditions and Impacts of Hydro-Structures on Fish," Energies, MDPI, vol. 11(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8722-:d:432214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.