IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8231-d424354.html
   My bibliography  Save this article

Estimation of the Non-Greenhouse Gas Emissions Inventory from Ships in the Port of Incheon

Author

Listed:
  • Hyangsook Lee

    (Graduate School of Logistics, Incheon National University, Incheon 22012, Korea)

  • Dongjoo Park

    (Department of Transportation Engineering, Unversity of Seoul, Seoul 02504, Korea)

  • Sangho Choo

    (Department of Urban Design & Planning, Hongik University, Seoul 02504, Korea)

  • Hoang T. Pham

    (Graduate School of Logistics, Incheon National University, Incheon 22012, Korea)

Abstract

Nowadays, maritime air pollution is regarded as a severe threat to coastal communities’ health. Therefore, many policies to reduce air pollution have been established worldwide. Moreover, there has been a shift in policy and research attention from greenhouse gases, especially CO 2 , to other air pollutants. To address the current local environmental challenges, this research analyzes the non-greenhouse gas emissions inventory (CO, NO x , SO x , PM, VOC, and NH 3 ) from ships in the second biggest port in Korea, the Port of Incheon (POI). A bottom-up activity-based methodology with real-time vessel activity data produced by the Vessel Traffic Service (VTS) is applied to obtain reliable estimations. NO x and SO x dominated the amount of emission emitted from ships. Tankers, general cargo ships, cruise ships, and container ships were identified as the highest sources of pollution. Based on the above results, this study discusses the need for long-term policies, such as the designation of a local emission control area (ECA) and the establishment of an emission management platform to reduce ship-source emissions. Furthermore, this study elucidates that significant emissions come from the docking process, ranging from 33.9% to 42.0% depending on the type of pollutant when only the auxiliary engines were being operated. Therefore, short-term solutions like applying exhausted gas cleaning systems, using on-shore power supplies, reducing docking time, or using greener alternative fuels (e.g., liquefied natural gas or biofuels) should be applied and motivated at the POI. These timely results could be useful for air quality management decision-making processes for local port operators and public agencies.

Suggested Citation

  • Hyangsook Lee & Dongjoo Park & Sangho Choo & Hoang T. Pham, 2020. "Estimation of the Non-Greenhouse Gas Emissions Inventory from Ships in the Port of Incheon," Sustainability, MDPI, vol. 12(19), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8231-:d:424354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tichavska, Miluše & Tovar, Beatriz, 2015. "Port-city exhaust emission model: An application to cruise and ferry operations in Las Palmas Port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 347-360.
    2. Marcella Castells Sanabra & Juan José Usabiaga Santamaría & Francesc Xavier Martínez De Osés, 2014. "Manoeuvring and hotelling external costs: enough for alternative energy sources?," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(1), pages 42-60, January.
    3. Villalba, Gara & Gemechu, Eskinder Demisse, 2011. "Estimating GHG emissions of marine ports--the case of Barcelona," Energy Policy, Elsevier, vol. 39(3), pages 1363-1368, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonne Kotta & Mihhail Fetissov & Ellen Kaasik & Janis Väät & Stanislav Štõkov & Ulla Pirita Tapaninen, 2023. "Towards Efficient Mapping of Greenhouse Gas Emissions: A Case Study of the Port of Tallinn," Sustainability, MDPI, vol. 15(12), pages 1-13, June.
    2. Maxime Sèbe & Laura Recuero-Virto & Akoh Fabien Yao & Hervé Dumez, 2024. "Environmentally Differentiated Port Dues: A Case Study for a Transparent Scheme," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(11), pages 2993-3009, November.
    3. Yanan Yu & Yude Shao, 2021. "Challenges for Cruise Sustainable Development and Its Legal Response: The Case of China," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    4. Carlos D. Paternina-Arboleda & Dayana Agudelo-Castañeda & Stefan Voß & Shubhendu Das, 2023. "Towards Cleaner Ports: Predictive Modeling of Sulfur Dioxide Shipping Emissions in Maritime Facilities Using Machine Learning," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    5. Luka Vukić & Kee-hung Lai, 2022. "Acute port congestion and emissions exceedances as an impact of COVID-19 outcome: the case of San Pedro Bay ports," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkafas, Ahmed G. & Seddiek, Ibrahim S., 2024. "Application of renewable energy systems in seaports towards sustainability and decarbonization: Energy, environmental and economic assessment," Renewable Energy, Elsevier, vol. 228(C).
    2. Zheng, Shiyuan & Ge, Ying-En & Fu, Xiaowen & Nie, Yu (Marco) & Xie, Chi, 2017. "Modeling collusion-proof port emission regulation of cargo-handling activities under incomplete information," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 543-567.
    3. Tuba Bakıcı & Esteve Almirall & Jonathan Wareham, 2013. "A Smart City Initiative: the Case of Barcelona," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 135-148, June.
    4. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    5. Gibbs, David & Rigot-Muller, Patrick & Mangan, John & Lalwani, Chandra, 2014. "The role of sea ports in end-to-end maritime transport chain emissions," Energy Policy, Elsevier, vol. 64(C), pages 337-348.
    6. Assunta Di Vaio & Luisa Varriale, 2018. "Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations," Sustainability, MDPI, vol. 10(3), pages 1-35, March.
    7. Theo Notteboom & Jasmine Siu Lee Lam, 2018. "The Greening of Terminal Concessions in Seaports," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    8. Woo, Jong-Kyun & Moon, Daniel S.H. & Lam, Jasmine Siu Lee, 2018. "The impact of environmental policy on ports and the associated economic opportunities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 234-242.
    9. Zis, Thalis P.V., 2019. "Prospects of cold ironing as an emissions reduction option," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 82-95.
    10. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
    11. Di Vaio, Assunta & Varriale, Luisa & Trujillo, Lourdes, 2019. "Management Control Systems in port waste management: Evidence from Italy," Utilities Policy, Elsevier, vol. 56(C), pages 127-135.
    12. S. Levent Kuzu & Levent Bilgili & Alper Kiliç, 2021. "Estimation and dispersion analysis of shipping emissions in Bandirma Port, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10288-10308, July.
    13. Beatriz Tovar & David Boto-García & José Francisco Baños Pino, 2024. "Meeting externalities: The effects of educational training on support for tourism activities," Tourism Economics, , vol. 30(3), pages 785-805, May.
    14. Rashid Khan, Haroon Ur & Siddique, Muhammad & Zaman, Khalid & Yousaf, Sheikh Usman & Shoukry, Alaa Mohamd & Gani, Showkat & Sasmoko, & Khan, Aqeel & Hishan, Sanil S. & Saleem, Hummera, 2018. "The impact of air transportation, railways transportation, and port container traffic on energy demand, customs duty, and economic growth: Evidence from a panel of low-, middle-, and high -income coun," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 18-35.
    15. Heilig, Leonard & Lalla-Ruiz, Eduardo & Voß, Stefan, 2017. "Multi-objective inter-terminal truck routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 178-202.
    16. Hongming Li & Xintao Li, 2022. "A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    17. Chang, Ching-Chih & Huang, Po-Chien & Tu, Jhih-Sheng, 2019. "Life cycle assessment of yard tractors using hydrogen fuel at the Port of Kaohsiung, Taiwan," Energy, Elsevier, vol. 189(C).
    18. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    19. (Kevin) Park, Hyosoo & Chang, Young-Tae & Zou, Bo, 2018. "Emission control under private port operator duopoly," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 40-65.
    20. Yun Peng & Xiangda Li & Wenyuan Wang & Ke Liu & Xiao Bing & Xiangqun Song, 2018. "A Method for Determining the Required Power Capacity of an On-Shore Power System Considering Uncertainties of Arriving Ships," Sustainability, MDPI, vol. 10(12), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8231-:d:424354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.