IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6918-d403938.html
   My bibliography  Save this article

A Novel Power Scheduling Mechanism for Islanded DC Microgrid Cluster

Author

Listed:
  • Abdul Wahid

    (Department of Electrical Engineering, Sarhad University of Science & IT, Peshawar 25000, Pakistan)

  • Javed Iqbal

    (Department of Electrical Engineering, Sarhad University of Science & IT, Peshawar 25000, Pakistan)

  • Affaq Qamar

    (US-Pakistan Center in Advanced Studies for Energy, University of Engineering and Technology, Peshawar 25000, Pakistan)

  • Salman Ahmed

    (Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan)

  • Abdul Basit

    (US-Pakistan Center in Advanced Studies for Energy, University of Engineering and Technology, Peshawar 25000, Pakistan)

  • Haider Ali

    (Department of Electrical & Electronics Engineering Technology, University of Technology, Nowshera 24100, Pakistan)

  • Omar M. Aldossary

    (Department of Physics and Astronomy, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia)

Abstract

Extension of the main grid to remote areas is economically not feasible. To electrify remote areas, one of the best choices is to install Renewable Energy Sources (RES) as a distributed generation (DG) and thus form a microgrid (MG) in islanded (Stand-alone) mode. In islanded mode, the MG has no support from the national grid. Thus, the overloading of islanded DC MG can collapse DC bus voltage and cause fluctuation in the load. Therefore, the power sharing and the interconnection among the microgrid (MG) cluster are necessary for reliable operation. Many methods for power sharing also aim at minimizing circulating currents which cannot be avoided when every MG feeds their load locally. Therefore, the proper power balancing among generation, loads, and in between MG cluster is challenging in islanded topology. This paper presents an intelligent controller for power sharing among PV-based MG clusters with load management of connected load during power deficiency. The priority is given to the local critical load of each MG. The second priority is given to the remaining load of the respective MG. The least priority is given to the loads connected to the neighboring MGs. The results show that the power continuation to the power-deficient load has been maintained when another MG has surplus power. The circulating current losses between the MG cluster has been fully avoided during no power sharing.

Suggested Citation

  • Abdul Wahid & Javed Iqbal & Affaq Qamar & Salman Ahmed & Abdul Basit & Haider Ali & Omar M. Aldossary, 2020. "A Novel Power Scheduling Mechanism for Islanded DC Microgrid Cluster," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6918-:d:403938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/6918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/6918/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    2. Brearley, Belwin J. & Prabu, R. Raja, 2017. "A review on issues and approaches for microgrid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 988-997.
    3. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    4. Eghtedarpour, N. & Farjah, E., 2012. "Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids," Renewable Energy, Elsevier, vol. 45(C), pages 96-110.
    5. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jae-Suk Lee & Yeong-Jun Choi, 2021. "A Stability Improvement Method of DC Microgrid System Using Passive Damping and Proportional-Resonance (PR) Control," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    2. Monir Sadat AlDavood & Abolfazl Mehbodniya & Julian L. Webber & Mohammad Ensaf & Mahdi Azimian, 2022. "Robust Optimization-Based Optimal Operation of Islanded Microgrid Considering Demand Response," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    3. Zaid Hamid Abdulabbas Al-Tameemi & Tek Tjing Lie & Gilbert Foo & Frede Blaabjerg, 2021. "Control Strategies of DC Microgrids Cluster: A Comprehensive Review," Energies, MDPI, vol. 14(22), pages 1-34, November.
    4. Sabrina Yeasmin & Tushar Kanti Roy & Subarto Kumar Ghosh, 2022. "Design of Robust Integral Terminal Sliding Mode Controllers with Exponential Reaching Laws for Solar PV and BESS-Based DC Microgrids with Uncertainties," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    5. Navid Bayati & Hamid Reza Baghaee & Mehdi Savaghebi & Amin Hajizadeh & Mohsen N. Soltani & Zhengyu Lin, 2021. "DC Fault Current Analyzing, Limiting, and Clearing in DC Microgrid Clusters," Energies, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirsaeidi, Sohrab & Dong, Xinzhou & Said, Dalila Mat, 2018. "Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 97-103.
    2. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    3. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    4. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    5. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    6. Hao Pan & Ming Ding & Anwei Chen & Rui Bi & Lei Sun & Shengliang Shi, 2018. "Research on Distributed Power Capacity and Site Optimization Planning of AC/DC Hybrid Micrograms Considering Line Factors," Energies, MDPI, vol. 11(8), pages 1-18, July.
    7. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    8. Dagar, Annu & Gupta, Pankaj & Niranjan, Vandana, 2021. "Microgrid protection: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    10. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    11. Torreglosa, Juan P. & García-Triviño, Pablo & Fernández-Ramirez, Luis M. & Jurado, Francisco, 2016. "Control strategies for DC networks: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 319-330.
    12. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    14. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    15. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    16. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    17. José M. Maza-Ortega & Juan M. Mauricio & Manuel Barragán-Villarejo & Charis Demoulias & Antonio Gómez-Expósito, 2019. "Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks," Energies, MDPI, vol. 12(19), pages 1-22, September.
    18. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    19. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    20. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6918-:d:403938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.