IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6758-d401704.html
   My bibliography  Save this article

Residual Analysis of Predictive Modelling Data for Automated Fault Detection in Building’s Heating, Ventilation and Air Conditioning Systems

Author

Listed:
  • Michael Parzinger

    (Development and Technology Transfer, Center for Research, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024 Rosenheim, Germany)

  • Lucia Hanfstaengl

    (Development and Technology Transfer, Center for Research, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024 Rosenheim, Germany)

  • Ferdinand Sigg

    (Development and Technology Transfer, Center for Research, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024 Rosenheim, Germany)

  • Uli Spindler

    (Development and Technology Transfer, Center for Research, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024 Rosenheim, Germany)

  • Ulrich Wellisch

    (Development and Technology Transfer, Center for Research, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024 Rosenheim, Germany)

  • Markus Wirnsberger

    (Development and Technology Transfer, Center for Research, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024 Rosenheim, Germany)

Abstract

Faults in Heating, Ventilation and Air Conditioning (HVAC) systems affect the energy efficiency of buildings. To date, there rarely exist methods to detect and diagnose faults during the operation of buildings that are both cost-effective and sufficient accurate. This study presents a method that uses artificial intelligence to automate the detection of faults in HVAC systems. The automated fault detection is based on a residual analysis of the predicted total heating power and the actual total heating power using an algorithm that aims to find an optimal decision rule for the determination of faults. The data for this study was provided by a detailed simulation of a residential case study house. A machine learning model and an ARX model predict the building operation. The model for fault detection is trained on a fault-free data set and then tested with a faulty operation. The algorithm for an optimal decision rule uses various statistical tests of residual properties such as the Sign Test, the Turning Point Test, the Box-Pierce Test and the Bartels-Rank Test. The results show that it is possible to predict faults for both known faults and unknown faults. The challenge is to find the optimal algorithm to determine the best decision rules. In the outlook of this study, further methods are presented that aim to solve this challenge.

Suggested Citation

  • Michael Parzinger & Lucia Hanfstaengl & Ferdinand Sigg & Uli Spindler & Ulrich Wellisch & Markus Wirnsberger, 2020. "Residual Analysis of Predictive Modelling Data for Automated Fault Detection in Building’s Heating, Ventilation and Air Conditioning Systems," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6758-:d:401704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/6758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/6758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. Claudio Giovanni Mattera & Muhyiddine Jradi & Hamid Reza Shaker, 2018. "Online Energy Simulator for building fault detection and diagnostics using dynamic energy performance model," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(3), pages 231-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleonora Arena & Alessandro Corsini & Roberto Ferulano & Dario Alfio Iuvara & Eric Stefan Miele & Lorenzo Ricciardi Celsi & Nour Alhuda Sulieman & Massimo Villari, 2021. "Anomaly Detection in Photovoltaic Production Factories via Monte Carlo Pre-Processed Principal Component Analysis," Energies, MDPI, vol. 14(13), pages 1-16, July.
    2. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
    2. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    3. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    4. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    5. Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clément & Rathelot, Roland, 2024. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," Journal of Development Economics, Elsevier, vol. 169(C).
    6. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    7. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Neurological Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 20(1), pages 1-35, December.
    8. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    9. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    10. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Body Wall Congenital Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 19(15), pages 1-38, July.
    11. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    12. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
    13. Jorge Luis Andrade & José Luis Valencia, 2022. "A Fuzzy Random Survival Forest for Predicting Lapses in Insurance Portfolios Containing Imprecise Data," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    14. Eeva-Katri Kumpula & Pauline Norris & Adam C Pomerleau, 2020. "Stocks of paracetamol products stored in urban New Zealand households: A cross-sectional study," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-11, June.
    15. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    16. Jian Lu & Raheel Ahmad & Thomas Nguyen & Jeffrey Cifello & Humza Hemani & Jiangyuan Li & Jinguo Chen & Siyi Li & Jing Wang & Achouak Achour & Joseph Chen & Meagan Colie & Ana Lustig & Christopher Dunn, 2022. "Heterogeneity and transcriptome changes of human CD8+ T cells across nine decades of life," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Timo Schulte & Tillmann Wurz & Oliver Groene & Sabine Bohnet-Joschko, 2023. "Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    18. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    19. Fogliato Riccardo & Oliveira Natalia L. & Yurko Ronald, 2021. "TRAP: a predictive framework for the Assessment of Performance in Trail Running," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 129-143, June.
    20. Edward J Gregr & Dana R Haggarty & Sarah C Davies & Cole Fields & Joanne Lessard, 2021. "Comprehensive marine substrate classification applied to Canada’s Pacific shelf," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6758-:d:401704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.