IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6196-d392889.html
   My bibliography  Save this article

Strongly and Loosely Bound Water in Ambient Particulate Matter—Qualitative and Quantitative Determination by Karl Fischer Coulometric Method

Author

Listed:
  • Kamila Widziewicz-Rzońca

    (Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland)

  • Malwina Tytła

    (Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland)

  • Grzegorz Majewski

    (Institute of Environmental Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-776 Warsaw, Poland)

  • Patrycja Rogula-Kopiec

    (Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland)

  • Krzysztof Loska

    (Faculty of Energy and Environmental Engineering, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice, Poland)

  • Wioletta Rogula-Kozłowska

    (Faculty of Fire Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland)

Abstract

Simple physical characterization of water evaporation can provide detailed information regarding its component distribution in particulate matter (PM) samples. The water presence in PM can greatly influence its polarity and subsequent reaction activity, for example, in secondary inorganic and organic matter formation. In this study, the presence of PM-bound water is detected using the Karl Fischer titration method in a temperature gradient with an aim to quantitatively assess different types of water occurrence. The analyses were initiated by testing two reference materials, namely urban particulate matter 1648a and urban dust 1649b (NIST). Four different types of water were found in both NIST materials, which helped to optimize the temperature ramp program and its adjustment for real PM samples. It was found that water contents in total suspended particles (TSP) are similar to those typically occurring in urban background stations—approximately 7.12–45.13% of the TSP mass, differentiated into the following water mass contributions: 48.5% of the total water found was loosely bound water; 23.3% was attributed to the absorption water; while the missing 20% could be probably attributed to crystal water removed only above 180 °C and artifacts connected with the drift correction problem. By comparing water release curves for single PM-compounds like pure SiO 2 ; Al 2 O 3 ; NH 4 NO 3 ; (NH 4 ) 2 SO 4 and NH 4 Cl with water spectra obtained for real PM samples, it was found that water in particulate matter mainly comes from the dehydration of TSP-bound crystalline like Al 2 O 3 , SiO 2 and to a lesser extent from salts like NH 4 NO 3 ; (NH 4 ) 2 SO 4 and NH 4 Cl. A newly used thermal ramp method was able to assess water contents from Teflon–polypropylene baked filters characterized by low melting points and therefore filter degradation even under temperatures oscillating around 200 °C. The advantage of this new work is the separation of different types of TSP-bound water contributions, facilitating and promoting further research on the origin of PM-bound water and its role in atmospheric chemistry, secondary aerosol formation and visibility.

Suggested Citation

  • Kamila Widziewicz-Rzońca & Malwina Tytła & Grzegorz Majewski & Patrycja Rogula-Kopiec & Krzysztof Loska & Wioletta Rogula-Kozłowska, 2020. "Strongly and Loosely Bound Water in Ambient Particulate Matter—Qualitative and Quantitative Determination by Karl Fischer Coulometric Method," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6196-:d:392889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Izabela Sówka & Anna Chlebowska-Styś & Łukasz Pachurka & Wioletta Rogula-Kozłowska & Barbara Mathews, 2019. "Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbora Švédová & Helena Raclavská & Marek Kucbel & Jana Růžičková & Konstantin Raclavský & Miroslav Koliba & Dagmar Juchelková, 2020. "Concentration Variability of Water-Soluble Ions during the Acceptable and Exceeded Pollution in an Industrial Region," IJERPH, MDPI, vol. 17(10), pages 1-26, May.
    2. Tomasz Mach & Wioletta Rogula-Kozłowska & Karolina Bralewska & Grzegorz Majewski & Patrycja Rogula-Kopiec & Justyna Rybak, 2021. "Impact of Municipal, Road Traffic, and Natural Sources on PM 10 : The Hourly Variability at a Rural Site in Poland," Energies, MDPI, vol. 14(9), pages 1-23, May.
    3. Robert Cichowicz & Maciej Dobrzański, 2021. "3D Spatial Analysis of Particulate Matter (PM 10 , PM 2.5 and PM 1.0 ) and Gaseous Pollutants (H 2 S, SO 2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant," Energies, MDPI, vol. 14(14), pages 1-21, July.
    4. Zbigniew Zuśka & Joanna Kopcińska & Ewa Dacewicz & Barbara Skowera & Jakub Wojkowski & Agnieszka Ziernicka–Wojtaszek, 2019. "Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM 10 ): A Case Study of the Mountain Valley (the ," Sustainability, MDPI, vol. 11(23), pages 1-12, November.
    5. Monika Załuska & Katarzyna Gładyszewska-Fiedoruk, 2020. "Regression Model of PM2.5 Concentration in a Single-Family House," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    6. Karolina Bralewska & Wioletta Rogula-Kozłowska & Dominika Mucha & Artur Jerzy Badyda & Magdalena Kostrzon & Adrian Bralewski & Stanisław Biedugnis, 2022. "Properties of Particulate Matter in the Air of the Wieliczka Salt Mine and Related Health Benefits for Tourists," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
    7. Tomasz Gorzelnik & Marek Bogacki & Robert Oleniacz, 2024. "Identification of Factors Influencing Episodes of High PM 10 Concentrations in the Air in Krakow (Poland) Using Random Forest Method," Sustainability, MDPI, vol. 16(20), pages 1-23, October.
    8. Hosang Ahn & Jae Sik Kang & Gyeong-Seok Choi & Hyun-Jung Choi, 2020. "Optical Sensing Approach to the Recognition of Different Types of Particulate Matters for Sustainable Indoor Environment Management," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    9. Robert Oleniacz & Tomasz Gorzelnik, 2021. "Assessment of the Variability of Air Pollutant Concentrations at Industrial, Traffic and Urban Background Stations in Krakow (Poland) Using Statistical Methods," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    10. Cichowicz, Robert & Dobrzański, Maciej, 2022. "3D spatial dispersion of particulate matter and gaseous pollutants on a university campus in the center of an urban agglomeration," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6196-:d:392889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.