IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6113-d391628.html
   My bibliography  Save this article

Environmental Potentials of Asphalt Materials Applied to Urban Roads: Case Study of the City of Münster

Author

Listed:
  • Mayara S. Siverio Lima

    (Department of Structural Engineering and Material Sciences, University of Innsbruck, 6020 Innsbruck, Austria)

  • Mohsen Hajibabaei

    (Department of Infrastructure, University of Innsbruck, 6020 Innsbruck, Austria)

  • Sina Hesarkazzazi

    (Department of Infrastructure, University of Innsbruck, 6020 Innsbruck, Austria)

  • Robert Sitzenfrei

    (Department of Infrastructure, University of Innsbruck, 6020 Innsbruck, Austria)

  • Alexander Buttgereit

    (Department of Mobility and Civil Engineering, 48155 Münster, Germany)

  • Cesar Queiroz

    (The World Bank, Washington, DC 20433, USA)

  • Arnold Tautschnig

    (Department of Structural Engineering and Material Sciences, University of Innsbruck, 6020 Innsbruck, Austria)

  • Florian Gschösser

    (Department of Structural Engineering and Material Sciences, University of Innsbruck, 6020 Innsbruck, Austria)

Abstract

Life cycle assessment (LCA) tools have been used by governments and city administrators to support the decision-making process toward creating a more sustainable society. Since LCA is strongly influenced by local conditions and may vary according to various factors, several institutions have launched cooperation projects to achieve sustainable development goals. In this study, we assessed the potential environmental enhancements within the production of road materials applied to the road network of Münster, Germany. We also compared traditional pavement structures used in Münster and alternative options containing asphalt mixtures with larger amounts of reclaimed asphalt pavement (RAP). Although the case study was conducted in Münster, the data collected and the results obtained in this study can be used for comparison purposes in other investigations. In the analysis, we considered all environmental impacts from raw material extraction to the finished product at the asphalt plant. Two environmental indicators were used: non-renewable cumulative energy demand (nr-CED) and global warming potential (GWP). The results show that using RAP increases the consumption of energy but potentially decreases the environmental impacts in terms of the nr-CED and GWP associated with the production of asphalt materials.

Suggested Citation

  • Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Arnold Tautschnig & Florian Gschösser, 2020. "Environmental Potentials of Asphalt Materials Applied to Urban Roads: Case Study of the City of Münster," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6113-:d:391628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Thom & Andrew Dawson, 2019. "Sustainable Road Design: Promoting Recycling and Non-Conventional Materials," Sustainability, MDPI, vol. 11(21), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    2. Natalia Cavero Wintruff & José Leomar Fernandes, 2023. "A Review on Life Cycle Assessment of Pavements in Brazil: Evaluating Environmental Impacts and Pavement Performance Integrating the International Roughness Index," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    3. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Viktors Haritonovs & Florian Gschösser, 2021. "Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    4. Mayara Sarisariyama Siverio Lima & Christina Makoundou & Cesare Sangiorgi & Florian Gschösser, 2022. "Life Cycle Assessment of Innovative Asphalt Mixtures Made with Crumb Rubber for Impact-Absorbing Pavements," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    5. Martin Decky & Katarina Hodasova & Zuzana Papanova & Eva Remisova, 2022. "Sustainable Adaptive Cycle Pavements Using Composite Foam Concrete at High Altitudes in Central Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    6. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    2. Bruce Thompson & Bernard Obika, 2020. "Advancing Applied Research in High Volume Transport in Low-Income Countries in Africa and South Asia," Sustainability, MDPI, vol. 12(10), pages 1-6, May.
    3. Zane Vincevica-Gaile & Tonis Teppand & Mait Kriipsalu & Maris Krievans & Yahya Jani & Maris Klavins & Roy Hendroko Setyobudi & Inga Grinfelde & Vita Rudovica & Toomas Tamm & Merrit Shanskiy & Egle Saa, 2021. "Towards Sustainable Soil Stabilization in Peatlands: Secondary Raw Materials as an Alternative," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    4. Fujin Hou & Tao Li & Xu Li & Yunliang Li & Meng Guo, 2021. "Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    5. Miloš Kopić & Tiana Milović & Bojan Matić & Stanislav Jovanović & Milan Marinković, 2022. "Optimum Fluid Content in Pavement Cold In-Place Recycling Containing Waste Materials," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6113-:d:391628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.