IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9499-d620504.html
   My bibliography  Save this article

Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement

Author

Listed:
  • Fujin Hou

    (Shandong Hi-Speed Construction Management Group Co., Ltd., Jinan 250001, China)

  • Tao Li

    (Shandong Hi-Speed Construction Management Group Co., Ltd., Jinan 250001, China)

  • Xu Li

    (Harbin Institute of Technology, Harbin 150090, China)

  • Yunliang Li

    (Harbin Institute of Technology, Harbin 150090, China)

  • Meng Guo

    (The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China)

Abstract

In order to analyze the anti-reflective cracking performance of a full-depth asphalt pavement and study the propagation process of a reflection crack and its influencing factors, a mechanical model of pavement structural crack analysis was established based on the ABAQUS finite element software and the extended finite element method (XFEM). Based on two different loading modes of three-point bending and direct tension, the propagation process of a reflection crack is analyzed. The results show that the anti-reflective cracking performance of a full-depth asphalt pavement is better than that of a semi-rigid base pavement structure, and the loading mode II based on direct tension is more consistent with the propagation mechanism of pavement reflection cracks, while the loading mode II is more suitable for analyzing the anti-reflective cracking performance of the pavement structure. Appropriately reducing the elastic modulus of the stress-absorbing layer can significantly improve the anti-reflective cracking performance of the full-depth asphalt pavement.

Suggested Citation

  • Fujin Hou & Tao Li & Xu Li & Yunliang Li & Meng Guo, 2021. "Research on the Anti-Reflective Cracking Performance of a Full-Depth Asphalt Pavement," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9499-:d:620504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Thom & Andrew Dawson, 2019. "Sustainable Road Design: Promoting Recycling and Non-Conventional Materials," Sustainability, MDPI, vol. 11(21), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    2. Bruce Thompson & Bernard Obika, 2020. "Advancing Applied Research in High Volume Transport in Low-Income Countries in Africa and South Asia," Sustainability, MDPI, vol. 12(10), pages 1-6, May.
    3. Zane Vincevica-Gaile & Tonis Teppand & Mait Kriipsalu & Maris Krievans & Yahya Jani & Maris Klavins & Roy Hendroko Setyobudi & Inga Grinfelde & Vita Rudovica & Toomas Tamm & Merrit Shanskiy & Egle Saa, 2021. "Towards Sustainable Soil Stabilization in Peatlands: Secondary Raw Materials as an Alternative," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    4. Miloš Kopić & Tiana Milović & Bojan Matić & Stanislav Jovanović & Milan Marinković, 2022. "Optimum Fluid Content in Pavement Cold In-Place Recycling Containing Waste Materials," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    5. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Arnold Tautschnig & Florian Gschösser, 2020. "Environmental Potentials of Asphalt Materials Applied to Urban Roads: Case Study of the City of Münster," Sustainability, MDPI, vol. 12(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9499-:d:620504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.