IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6032-d390561.html
   My bibliography  Save this article

Temperature Reduction Effects of Rooftop Garden Arrangements: A Case Study of Seoul National University

Author

Listed:
  • Jaekyoung Kim

    (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul 08826, Korea)

  • Sang Yeob Lee

    (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul 08826, Korea)

  • Junsuk Kang

    (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul 08826, Korea
    Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
    Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul 08826, Korea
    Interdisciplinary Program in Urban Design, Seoul National University, Seoul 08826, Korea)

Abstract

Increasing urbanization has highlighted the need for more green spaces in built-up areas, with considerable attention of vertical installations such as green walls and rooftop gardens. This study hypothesizes that the rooftop-garden-induced temperature reduction effects vary depending on the type of arrangements. Therefore, the objective of this study is to find the most efficient arrangement of the roof gardens for temperature reduction. This paper presents the results of a quantitative analysis of the temperature reduction effect of rooftop gardens installed on structures and sites on the campus of Seoul National University. An ENVI-Met simulation is utilized to analyze the effects of roads, buildings, green areas, and vacant land on temperature and humidity. The effects of the following five rooftop garden configurations were compared: extreme, linear (longitudinal), linear (transverse), checkerboard, and unrealized rooftop gardens. The extreme and linear (longitudinal) gardens achieved the maximum temperature reduction, −0.3 °C, while the lowest maximum reduction of −0.2 °C was achieved by the checkerboard pattern. Over larger areas, the greatest impact has been recorded in the mornings rather than in the afternoons. The results of this study will be useful for those planning and installing rooftop gardens at the district and city levels.

Suggested Citation

  • Jaekyoung Kim & Sang Yeob Lee & Junsuk Kang, 2020. "Temperature Reduction Effects of Rooftop Garden Arrangements: A Case Study of Seoul National University," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6032-:d:390561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junyan Yang & Beixiang Shi & Geyang Xia & Qin Xue & Shi-Jie Cao, 2020. "Impacts of Urban Form on Thermal Environment Near the Surface Region at Pedestrian Height: A Case Study Based on High-Density Built-Up Areas of Nanjing City in China," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    2. Jou-Man Huang & Liang-Chun Chen, 2020. "A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaekyoung Kim & Junsuk Kang, 2020. "Analysis of Flood Damage in the Seoul Metropolitan Government Using Climate Change Scenarios and Mitigation Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    2. Jinsil Park & Yeeun Shin & Suyeon Kim & Sang-Woo Lee & Kyungjin An, 2022. "Efficient Plant Types and Coverage Rates for Optimal Green Roof to Reduce Urban Heat Island Effect," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    3. Fatma Balany & Nitin Muttil & Shobha Muthukumaran & Man Sing Wong & Anne W. M. Ng, 2022. "Studying the Effect of Blue-Green Infrastructure on Microclimate and Human Thermal Comfort in Melbourne’s Central Business District," Sustainability, MDPI, vol. 14(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Wei Feng & Wei Ding & Yingdi Yin & Qixian Lin & Meng Zheng & Miaomiao Fei, 2021. "Optimization Strategy of Traditional Block Form Based on Field Investigation—A Case Study of Xi’an Baxian’an, China," IJERPH, MDPI, vol. 18(20), pages 1-25, October.
    3. Jinsil Park & Yeeun Shin & Suyeon Kim & Sang-Woo Lee & Kyungjin An, 2022. "Efficient Plant Types and Coverage Rates for Optimal Green Roof to Reduce Urban Heat Island Effect," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    4. Ken Tamminga & João Cortesão & Michiel Bakx, 2020. "Convivial Greenstreets: A Concept for Climate-Responsive Urban Design," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    5. Mengxi Li & Xiuguo Zou & Bo Feng & Xinfa Qiu, 2023. "Use of Computational Fluid Dynamics to Study Ammonia Concentrations at Pedestrian Height in Smart Broiler Chamber Clusters," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    6. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    7. Gabriele Battista & Luca Evangelisti & Claudia Guattari & Emanuele De Lieto Vollaro & Roberto De Lieto Vollaro & Francesco Asdrubali, 2020. "Urban Heat Island Mitigation Strategies: Experimental and Numerical Analysis of a University Campus in Rome (Italy)," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    8. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6032-:d:390561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.