IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p5898-d388166.html
   My bibliography  Save this article

Effects of Landscape Changes on Soil Erosion in the Built Environment: Application of Geospatial-Based RUSLE Technique

Author

Listed:
  • Bilal Aslam

    (Department of Earth Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Ahsen Maqsoom

    (Department of Civil Engineering, COMSATS University Islamabad, Wah Campus 47040, Pakistan)

  • Shahzaib

    (Department of Civil Engineering, COMSATS University Islamabad, Wah Campus 47040, Pakistan)

  • Zaheer Abbas Kazmi

    (Department of Civil & Construction Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Mahmoud Sodangi

    (Department of Civil & Construction Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Fahad Anwar

    (Department of Civil & Construction Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Muhammad Hassan Bakri

    (Department of Civil & Construction Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Rana Faisal Tufail

    (Department of Civil Engineering, COMSATS University Islamabad, Wah Campus 47040, Pakistan)

  • Danish Farooq

    (Department of Transport Technology and Economics, Budapest University of Technology and Economics, Stoczek u. 2, H-1111 Budapest, Hungary)

Abstract

The world’s ecosystem is severely affected by the increase in the rate of soil erosion and sediment transport in the built environment and agricultural lands. Land use land cover changes (LULCC) are considered as the most significant cause of sediment transport. This study aims to estimate the effect of LULCC on soil erosion potential in the past 20 years (2000–2020) by using Revised Universal Soil Loss Equation (RUSLE) model based on Geographic Information System (GIS). Different factors were analyzed to study the effect of each factor including R factor, K factor, LS factor, and land cover factor on the erosion process. Maps generated in the study show the changes in the severity of soil loss in the Chitral district of Pakistan. It was found out that 4% of the area was under very high erosion risk in the year 2000 which increased to 8% in the year 2020. An increase in agricultural land (4%) was observed in the last 20 years which shows that human activities largely affected the study area. The outcomes of this study will help the stakeholders and regulatory decision makers to control deforestation and take other necessary actions to minimize the rate of soil erosion. Such an efficient planning will also be helpful to reduce the sedimentation in the reservoir of hydraulic dam(s) constructed on Chitral river, which drains through this watershed.

Suggested Citation

  • Bilal Aslam & Ahsen Maqsoom & Shahzaib & Zaheer Abbas Kazmi & Mahmoud Sodangi & Fahad Anwar & Muhammad Hassan Bakri & Rana Faisal Tufail & Danish Farooq, 2020. "Effects of Landscape Changes on Soil Erosion in the Built Environment: Application of Geospatial-Based RUSLE Technique," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:5898-:d:388166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/5898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/5898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mulat Guadie & Eyayu Molla & Mulatie Mekonnen & Artemi Cerdà, 2020. "Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia," Land, MDPI, vol. 9(1), pages 1-15, January.
    2. Jacob L. Stock & Jeffrey M. Chusid, 2020. "Urbanizing India’s frontier: Sriganganagar and canal-town planning on the Indus plains," Planning Perspectives, Taylor & Francis Journals, vol. 35(2), pages 253-276, March.
    3. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    4. Saskia Visser & Saskia Keesstra & Gilbert Maas & Margot de Cleen & Co Molenaar, 2019. "Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Fragomeli & Azzurra Annunziata & Gennaro Punzo, 2024. "Promoting the Transition towards Agriculture 4.0: A Systematic Literature Review on Drivers and Barriers," Sustainability, MDPI, vol. 16(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.
    2. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    4. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    5. Fang Yang & Rui Cen & Weiying Feng & Jing Liu & Zhongyi Qu & Qingfeng Miao, 2020. "Effects of Super-Absorbent Polymer on Soil Remediation and Crop Growth in Arid and Semi-Arid Areas," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    6. Theodora Angelopoulou & Athanasios Balafoutis & George Zalidis & Dionysis Bochtis, 2020. "From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation—A Review," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    7. Yun Xue & Bin Zou & Yimin Wen & Yulong Tu & Liwei Xiong, 2020. "Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra," Sustainability, MDPI, vol. 12(11), pages 1-16, May.
    8. Li, Chunxia & Li, Youjun & Fu, Guozhan & Huang, Ming & Ma, Chao & Wang, Hezheng & Zhang, Jun, 2020. "Cultivation and mulching materials strategies to enhance soil water status, net ecosystem and crop water productivity of winter wheat in semi-humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Artemi Cerdà & Jesús Rodrigo-Comino, 2021. "Regional Farmers’ Perception and Societal Issues in Vineyards Affected by High Erosion Rates," Land, MDPI, vol. 10(2), pages 1-18, February.
    10. Yaming Tang & Yinqiang Bi & Zizheng Guo & Zhengguo Li & Wei Feng & Jiayun Wang & Yane Li & Hongna Ma, 2021. "A Novel Method for Obtaining the Loess Structural Index from Computed Tomography Images: A Case Study from the Lvliang Mountains of the Loess Plateau (China)," Land, MDPI, vol. 10(3), pages 1-15, March.
    11. Ecker, Olivier & Hatzenbuehler, Patrick L. & Mahrt, Kristi, 2018. "Transforming agriculture for improving food and nutrition security among Nigerian farm households," NSSP working papers 56, International Food Policy Research Institute (IFPRI).
    12. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    13. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    14. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    15. Pandey, Shanta, 2017. "Persistent nature of child marriage among women even when it is illegal: The case of Nepal," Children and Youth Services Review, Elsevier, vol. 73(C), pages 242-247.
    16. OGUNNOWO, Fatai Abiodun & Prof. F. A. OKWO & JULIUS, Deborah Nwanne, 2023. "Availability and Utilization of Security Facilities in Federal Tertiary Institutions of Enugu State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(5), pages 931-941, May.
    17. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    18. Victor Kasulo & Rochelle Holm & Mavuto Tembo & Wales Singini & Joshua Mchenga, 2020. "Enhancing sustainable sanitation through capacity building and rural sanitation marketing in Malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 201-215, January.
    19. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    20. Alex. B. McBratney & Damien Field & Cristine L.S. Morgan & Jingyi Huang, 2019. "On Soil Capability, Capacity, and Condition," Sustainability, MDPI, vol. 11(12), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:5898-:d:388166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.