IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5158-d375761.html
   My bibliography  Save this article

Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage

Author

Listed:
  • Morteza Nazari-Heris

    (Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran; mun369@psu.edu
    Department of Architectural Engineering, Pennsylvania State University,104 Engineering Unit A, State College, PA 16802, USA; sxa51@psu.edu)

  • Behnam Mohammadi-Ivatloo

    (Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran; mun369@psu.edu
    Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Somayeh Asadi

    (Department of Architectural Engineering, Pennsylvania State University,104 Engineering Unit A, State College, PA 16802, USA; sxa51@psu.edu)

Abstract

The coordination of energy carriers in energy systems has significant benefits in enhancing the flexibility, efficiency, and sustainability characteristics of energy networks. These benefits are of great importance for multi-carrier energy networks due to the complexity of obtaining optimal dispatch, considering the non-convex nature of their energy conversion. The current study proposes a robust operation model for the coordination of multi-carrier systems, including electricity, gas, heat, and water carriers concerning thermal energy storage technology. Thermal energy storage is for storing extra heat generated by combined heat and power (CHP) plants and boilers in time intervals with low heat demand on the system and discharging it when required. Energy network operators should have the capability to manage uncertain energy loads to study the impact of load variation on the decision-making process in network operation. Accordingly, this study employs an information gap decision theory (IGDT) method to model the uncertainty of the power demand in optimal system operation. By applying the IGDT approach, the operator of the energy system can use the appropriate methodology to obtain a robust optimal operation. Such a modeling approach helps the operator to make suitable decisions about probable variations in power load. The introduced model is applied in a test system for evaluating the performance and effectiveness of the introduced scheme.

Suggested Citation

  • Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Somayeh Asadi, 2020. "Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5158-:d:375761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    2. Zeng, Qing & Zhang, Baohua & Fang, Jiakun & Chen, Zhe, 2017. "A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system," Applied Energy, Elsevier, vol. 200(C), pages 192-203.
    3. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    4. Widl, Edmund & Jacobs, Tobias & Schwabeneder, Daniel & Nicolas, Sebastien & Basciotti, Daniele & Henein, Sawsan & Noh, Tae-Gil & Terreros, Olatz & Schuelke, Anett & Auer, Hans, 2018. "Studying the potential of multi-carrier energy distribution grids: A holistic approach," Energy, Elsevier, vol. 153(C), pages 519-529.
    5. Zeng, Qing & Fang, Jiakun & Li, Jinghua & Chen, Zhe, 2016. "Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion," Applied Energy, Elsevier, vol. 184(C), pages 1483-1492.
    6. Shaabani, Yousef ali & Seifi, Ali Reza & Kouhanjani, Masoud Joker, 2017. "Stochastic multi-objective optimization of combined heat and power economic/emission dispatch," Energy, Elsevier, vol. 141(C), pages 1892-1904.
    7. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    8. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    9. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    10. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Li, Xiaojing, 2017. "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, Elsevier, vol. 194(C), pages 696-704.
    11. Lu, Shuai & Gu, Wei & Zhou, Jinhui & Zhang, Xuesong & Wu, Chenyu, 2018. "Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy," Energy, Elsevier, vol. 152(C), pages 358-370.
    12. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh, 2018. "A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids," Energy, Elsevier, vol. 149(C), pages 135-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghahramani, Mehrdad & Nazari-Heris, Morteza & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2022. "A two-point estimate approach for energy management of multi-carrier energy systems incorporating demand response programs," Energy, Elsevier, vol. 249(C).
    2. Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
    3. Mohammad Dehghani & Mohammad Mardaneh & Om P. Malik & Josep M. Guerrero & Carlos Sotelo & David Sotelo & Morteza Nazari-Heris & Kamal Al-Haddad & Ricardo A. Ramirez-Mendoza, 2020. "Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    4. Li, Peng & Wang, Zixuan & Yang, Weihong & Liu, Haitao & Yin, Yunxing & Wang, Jiahao & Guo, Tianyu, 2021. "Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game," Energy, Elsevier, vol. 214(C).
    5. Mohammad Hemmati & Mehdi Abapour & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Optimal Operation of Integrated Electrical and Natural Gas Networks with a Focus on Distributed Energy Hub Systems," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    6. Javad Estakhr & Mohsen Simab & Taher Niknam, 2021. "Security Analysis of Hybrid Multi-Carrier Energy Systems," Sustainability, MDPI, vol. 13(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    2. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    3. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    4. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    5. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    7. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    8. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    9. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    10. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    12. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    13. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    14. Ghahramani, Mehrdad & Nazari-Heris, Morteza & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2022. "A two-point estimate approach for energy management of multi-carrier energy systems incorporating demand response programs," Energy, Elsevier, vol. 249(C).
    15. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Sheng, Tongtian, 2018. "Multi-time period optimized configuration and scheduling of gas storage in gas-fired power plants," Applied Energy, Elsevier, vol. 226(C), pages 924-934.
    16. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    17. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Liu, Yuquan & Xiong, Wen, 2017. "An interval gas flow analysis in natural gas and electricity coupled networks considering the uncertainty of wind power," Applied Energy, Elsevier, vol. 201(C), pages 343-353.
    18. Jiang, Yunpeng & Ren, Zhouyang & Yang, Xin & Li, Qiuyan & Xu, Yan, 2022. "A steady-state energy flow analysis method for integrated natural gas and power systems based on topology decoupling," Applied Energy, Elsevier, vol. 306(PA).
    19. Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
    20. Kwabena Addo Pambour & Rostand Tresor Sopgwi & Bri-Mathias Hodge & Carlo Brancucci, 2018. "The Value of Day-Ahead Coordination of Power and Natural Gas Network Operations," Energies, MDPI, vol. 11(7), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5158-:d:375761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.