IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4799-d370382.html
   My bibliography  Save this article

Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China

Author

Listed:
  • Dihang Xu

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    State Key Laboratory of Urban and Regional Ecology, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhiyun Ouyang

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Tong Wu

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Baolong Han

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract

Urbanization is characterized by population agglomeration and the expansion of impervious land surfaces. As a result of ongoing urbanization, rain and flood events have increasingly affected the well-being of residents in cities across the world. This should draw attention to the role of urban ecosystems in providing runoff retention/flood mitigation services. Focusing on Shenzhen, a major city in southern China, we used a hydrologic model based on the Soil Conservation Service curve number (SCS-CN) model to evaluate this flood reduction ecosystem service and its dynamic trends based on long-term remote sensing data from 1980 to 2018. We find that Shenzhen’s capacity for flood reduction gradually decreased due to changes in land use. The spatial distribution showed strong reduction capacity in the eastern part of the city and weak capacity in the western part. Additionally, the city’s total flood reduction capacity decreased by over 1.88 × 10 8 m 3 over the past two decades. This loss of ecosystem-based flood reduction capacity undermines Shenzhen’s resilience against extreme weather events. Due to climate change, Shenzhen should advance its plan to build a “Sponge City” rooted in the conservation, restoration, and construction of urban ecological spaces.

Suggested Citation

  • Dihang Xu & Zhiyun Ouyang & Tong Wu & Baolong Han, 2020. "Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4799-:d:370382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Singh & B. Yaduvanshi & Swati Patel & Saswati Ray, 2013. "SCS-CN Based Quantification of Potential of Rooftop Catchments and Computation of ASRC for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2001-2012, May.
    2. Ajaykumar Kadam & Sanjay Kale & Nagesh Pande & N. Pawar & R. Sankhua, 2012. "Identifying Potential Rainwater Harvesting Sites of a Semi-arid, Basaltic Region of Western India, Using SCS-CN Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2537-2554, July.
    3. Ke Wang & Lu Wang & Yi-Ming Wei & Maosheng Ye, 2013. "Beijing storm of July 21, 2012: observations and reflections," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 969-974, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Stec & Daniel Słyś, 2023. "New Bioretention Drainage Channel as One of the Low-Impact Development Solutions: A Case Study from Poland," Resources, MDPI, vol. 12(7), pages 1-17, July.
    2. Nawnit Kumar & Xiaoli Liu & Sanjena Narayanasamydamodaran & Kamlesh Kumar Pandey, 2021. "A Systematic Review Comparing Urban Flood Management Practices in India to China’s Sponge City Program," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    3. Wojciech Korbel & Filip Suchoń & Marta Łapuszek, 2021. "Water Dams of the Krakow Fortress: Potential of a Vanishing Heritage," Land, MDPI, vol. 10(11), pages 1-20, November.
    4. Jaekyoung Kim & Junsuk Kang, 2020. "Analysis of Flood Damage in the Seoul Metropolitan Government Using Climate Change Scenarios and Mitigation Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuldeep Tiwari & Rohit Goyal & Archana Sarkar, 2018. "GIS-based Methodology for Identification of Suitable Locations for Rainwater Harvesting Structures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1811-1825, March.
    2. P. Singh & S. Mishra & R. Berndtsson & M. Jain & R. Pandey, 2015. "Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4111-4127, September.
    3. Tom Christensen & Liang Ma, 2020. "Coordination Structures and Mechanisms for Crisis Management in China: Challenges of Complexity," Public Organization Review, Springer, vol. 20(1), pages 19-36, March.
    4. Rejani Raghavan & Kondru Venkateswara Rao & Maheshwar Shivashankar Shirahatti & Duvvala Kalyana Srinivas & Kotha Sammi Reddy & Gajjala Ravindra Chary & Kodigal A. Gopinath & Mohammed Osman & Mathyam P, 2022. "Assessment of Spatial and Temporal Variations in Runoff Potential under Changing Climatic Scenarios in Northern Part of Karnataka in India Using Geospatial Techniques," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    5. Ray-Shyan Wu & Gabriela Lucia Letona Molina & Fiaz Hussain, 2018. "Optimal Sites Identification for Rainwater Harvesting in Northeastern Guatemala by Analytical Hierarchy Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 4139-4153, September.
    6. Vema, Vamsikrishna & Sudheer, K.P. & Chaubey, I., 2019. "Fuzzy inference system for site suitability evaluation of water harvesting structures in rainfed regions," Agricultural Water Management, Elsevier, vol. 218(C), pages 82-93.
    7. Wei Xu & Li Zhuo & Jing Zheng & Yi Ge & Zhihui Gu & Yugang Tian, 2016. "Assessment of the Casualty Risk of Multiple Meteorological Hazards in China," IJERPH, MDPI, vol. 13(2), pages 1-12, February.
    8. Ajaykumar K. Kadam & Sanjay S. Kale & B. N. Umrikar & R. N. Sankhua & N. J. Pawar, 2022. "Assessing site suitability potential for soil and water conservation structures by using modified micro-watershed prioritization method: geomorphometric and geomatic approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4659-4683, April.
    9. Xiaojun Guo & Jianbin Huang & Yong Luo & Zongci Zhao & Ying Xu, 2016. "Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2299-2319, December.
    10. Satyajit Gaikwad & Suryakant Gaikwad & Dhananjay Meshram & Vasant Wagh & Avinash Kandekar & Ajaykumar Kadam, 2020. "Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2591-2624, March.
    11. Delaney, R.G. & Blackburn, G.A. & Whyatt, J.D. & Folkard, A.M., 2022. "SiteFinder: A geospatial scoping tool to assist the siting of external water harvesting structures," Agricultural Water Management, Elsevier, vol. 272(C).
    12. Ajaykumar Kadam & Animesh S. Karnewar & Bhavana Umrikar & R. N. Sankhua, 2019. "Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1809-1833, August.
    13. Napoli, Marco & Cecchi, Stefano & Orlandini, Simone & Zanchi, Camillo A., 2014. "Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy," Agricultural Water Management, Elsevier, vol. 141(C), pages 55-65.
    14. Anwar Hussain & Khalil Ur Rahman & Muhammad Shahid & Sajjad Haider & Quoc Bao Pham & Nguyen Thi Thuy Linh & Saad Shauket Sammen, 2022. "Investigating feasible sites for multi-purpose small dams in Swat District of Khyber Pakhtunkhwa Province, Pakistan: socioeconomic and environmental considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10852-10875, September.
    15. Jersain Gómez Núñez & Magdalena García Martínez & Rojacques Mompremier & Beatriz A. González Beltrán & Icela Dagmar Barceló Quintal, 2022. "Methodology to Optimize Rainwater Tank-sizing and Cluster Configuration for a Group of Buildings," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5191-5205, October.
    16. Akinchan Singhai & Sandipan Das & Ajaykumar K. Kadam & J. P. Shukla & D. S. Bundela & Mahesh Kalashetty, 2019. "GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 777-797, April.
    17. Sabina Kordana & Daniel Słyś, 2020. "Decision Criteria for the Development of Stormwater Management Systems in Poland," Resources, MDPI, vol. 9(2), pages 1-21, February.
    18. Chunlin Li & Miao Liu & Yuanman Hu & Tuo Shi & Min Zong & M. Todd Walter, 2018. "Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area," IJERPH, MDPI, vol. 15(4), pages 1-14, April.
    19. S. Lebel & L. Fleskens & P. Forster & L. Jackson & S. Lorenz, 2015. "Evaluation of In Situ Rainwater Harvesting as an Adaptation Strategy to Climate Change for Maize Production in Rainfed Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4803-4816, October.
    20. Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4799-:d:370382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.