IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i4d10.1007_s10668-021-01627-2.html
   My bibliography  Save this article

Assessing site suitability potential for soil and water conservation structures by using modified micro-watershed prioritization method: geomorphometric and geomatic approach

Author

Listed:
  • Ajaykumar K. Kadam

    (Savitribai Phule Pune University)

  • Sanjay S. Kale

    (Savitribai Phule Pune University)

  • B. N. Umrikar

    (Savitribai Phule Pune University)

  • R. N. Sankhua

    (Central Water Commission)

  • N. J. Pawar

    (Savitribai Phule Pune University)

Abstract

Efficiency of soil water conservation (SWC) structure depends on its precise locations as well as its success in reducing surface runoff, soil erosion and increasing biomass for sustainable watershed development. The present study focuses on the identification of site suitability potential for locating SWC structures in micro-watersheds of Shivganga basin from Deccan Volcanic Province, India. First time, micro-watershed prioritization coupled with modified weighted sum analysis has been used to identify the potential areas for SWC. The main advantage of this modified method is removing biases in ranking micro-watersheds having same weighted sum scores. This method principally assists to provide suitable location for SWC structures so as to reduce future losses such as rupture of earthen wall, flash flood losses and deprived storage capacity. The suitability potential analysis incorporates the Integrated Mission for Sustainable Development (IMSD) specifications designed for various SWC structures along with the linear, areal and relief morphometric parameters. Derived site suitability potential areas were validated by field observations and ground truth verification with reference to the existing SWC sites, which show 65–100% accuracy. In conclusion, adopted modified methodology demands less data that deciphers the site suitability zones more precisely with respect to micro-watersheds.

Suggested Citation

  • Ajaykumar K. Kadam & Sanjay S. Kale & B. N. Umrikar & R. N. Sankhua & N. J. Pawar, 2022. "Assessing site suitability potential for soil and water conservation structures by using modified micro-watershed prioritization method: geomorphometric and geomatic approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4659-4683, April.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01627-2
    DOI: 10.1007/s10668-021-01627-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01627-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01627-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Chowdary & D. Ramakrishnan & Y. Srivastava & Vinu Chandran & A. Jeyaram, 2009. "Integrated Water Resource Development Plan for Sustainable Management of Mayurakshi Watershed, India using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1581-1602, June.
    2. Grum, Berhane & Hessel, Rudi & Kessler, Aad & Woldearegay, Kifle & Yazew, Eyasu & Ritsema, Coen & Geissen, Violette, 2016. "A decision support approach for the selection and implementation of water harvesting techniques in arid and semi-arid regions," Agricultural Water Management, Elsevier, vol. 173(C), pages 35-47.
    3. A. Alvarado & M. Esteller & E. Quentin & J. Expósito, 2016. "Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on their Vulnerability to Contamination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1549-1566, March.
    4. A. Alvarado & M. V. Esteller & E. Quentin & J. L. Expósito, 2016. "Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on their Vulnerability to Contamination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1549-1566, March.
    5. Adgo, Enyew & Teshome, Akalu & Mati, Bancy, 2013. "Impacts of long-term soil and water conservation on agricultural productivity: The case of Anjenie watershed, Ethiopia," Agricultural Water Management, Elsevier, vol. 117(C), pages 55-61.
    6. Ajaykumar Kadam & Sanjay Kale & Nagesh Pande & N. Pawar & R. Sankhua, 2012. "Identifying Potential Rainwater Harvesting Sites of a Semi-arid, Basaltic Region of Western India, Using SCS-CN Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2537-2554, July.
    7. Rajat Agarwal & P. Garg & R. Garg, 2013. "Remote Sensing and GIS Based Approach for Identification of Artificial Recharge Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2671-2689, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajaykumar Kadam & Animesh S. Karnewar & Bhavana Umrikar & R. N. Sankhua, 2019. "Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1809-1833, August.
    2. Christopher J. Brown & James Ward & June Mirecki, 2016. "A Revised Brackish Water Aquifer Storage and Recovery (ASR) Site Selection Index for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2465-2481, May.
    3. Anwar Hussain & Khalil Ur Rahman & Muhammad Shahid & Sajjad Haider & Quoc Bao Pham & Nguyen Thi Thuy Linh & Saad Shauket Sammen, 2022. "Investigating feasible sites for multi-purpose small dams in Swat District of Khyber Pakhtunkhwa Province, Pakistan: socioeconomic and environmental considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10852-10875, September.
    4. Demesouka, Olympia E. & Anagnostopoulos, Konstantinos P. & Siskos, Eleftherios, 2019. "Spatial multicriteria decision support for robust land-use suitability: The case of landfill site selection in Northeastern Greece," European Journal of Operational Research, Elsevier, vol. 272(2), pages 574-586.
    5. José Roberto Ribas & Juan Ignacio Perez Diaz, 2019. "Assessment of Sustainable Use of a Multipurpose Reservoir through the Multicriteria Approach: the Case of Corumbá IV Reservoir, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 591-602, January.
    6. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    7. Kuldeep Tiwari & Rohit Goyal & Archana Sarkar, 2018. "GIS-based Methodology for Identification of Suitable Locations for Rainwater Harvesting Structures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1811-1825, March.
    8. Ali, Daniel Ayalew & Deininger, Klaus & Monchuk, Daniel, 2020. "Using satellite imagery to assess impacts of soil and water conservation measures: Evidence from Ethiopia’s Tana-Beles watershed," Ecological Economics, Elsevier, vol. 169(C).
    9. Amlan Ghosh & Sayandeep Rakshit & Suvarna Tikle & Sandipan Das & Uday Chatterjee & Chaitanya B. Pande & Abed Alataway & Ahmed A. Al-Othman & Ahmed Z. Dewidar & Mohamed A. Mattar, 2022. "Integration of GIS and Remote Sensing with RUSLE Model for Estimation of Soil Erosion," Land, MDPI, vol. 12(1), pages 1-15, December.
    10. Dula Etana & Denyse J. R. M. Snelder & Cornelia F. A. van Wesenbeeck & Tjard de Cock Buning, 2021. "The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    11. Mohamed Elhag & Aris Psilovikos & Ioannis Manakos & Kostas Perakis, 2011. "Application of the Sebs Water Balance Model in Estimating Daily Evapotranspiration and Evaporative Fraction from Remote Sensing Data Over the Nile Delta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2731-2742, September.
    12. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    13. Satyajit Gaikwad & Suryakant Gaikwad & Dhananjay Meshram & Vasant Wagh & Avinash Kandekar & Ajaykumar Kadam, 2020. "Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2591-2624, March.
    14. Khamis Naba Sayl & Nur Shazwani Muhammad & Zaher Mundher Yaseen & Ahmed El-shafie, 2016. "Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3299-3313, July.
    15. Delaney, R.G. & Blackburn, G.A. & Whyatt, J.D. & Folkard, A.M., 2022. "SiteFinder: A geospatial scoping tool to assist the siting of external water harvesting structures," Agricultural Water Management, Elsevier, vol. 272(C).
    16. Demissie, Simeneh & Meshesha, Derege Tsegaye & Adgo, Enyew & Haregeweyn, Nigussie & Tsunekawa, Atsushi & Ayana, Muluken & Mulualem, Temesgen & Wubet, Anteneh, 2022. "Effects of soil bund spacing on runoff, soil loss, and soil water content in the Lake Tana Basin of Ethiopia," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    18. Vojtek Matej & Vojteková Jana, 2016. "GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study," Quaestiones Geographicae, Sciendo, vol. 35(3), pages 97-116, September.
    19. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    20. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01627-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.