IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4595-d367348.html
   My bibliography  Save this article

Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland

Author

Listed:
  • Jennifer Attard

    (Circular Bioeconomy Research Group, Institute of Technology Tralee, Dromtacker, Tralee, Co. Kerry V92 HD4V, Ireland)

  • Helena McMahon

    (Circular Bioeconomy Research Group, Institute of Technology Tralee, Dromtacker, Tralee, Co. Kerry V92 HD4V, Ireland)

  • Pat Doody

    (Intelligent Mechatronics and RFID (IMaR), Institute of Technology Tralee, Dromtacker, Tralee, Co. Kerry V92 HD4V, Ireland)

  • Johan Belfrage

    (Industrial Biotechnology Innovation Centre, Inovo building, 121 George Street, Glasgow G1 1RD, UK)

  • Catriona Clark

    (Industrial Biotechnology Innovation Centre, Inovo building, 121 George Street, Glasgow G1 1RD, UK)

  • Judit Anda Ugarte

    (Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, C Tabladilla S/N 41013 Seville, Spain)

  • Maria Natividad Pérez-Camacho

    (Tragsatec Andalucía, C Parsi 5, 8, 41016 Seville, Spain)

  • María del Sol Cuenca Martín

    (Tragsatec Andalucía, C Parsi 5, 8, 41016 Seville, Spain)

  • Antonio José Giráldez Morales

    (Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, C Tabladilla S/N 41013 Seville, Spain)

  • James Gaffey

    (Circular Bioeconomy Research Group, Institute of Technology Tralee, Dromtacker, Tralee, Co. Kerry V92 HD4V, Ireland)

Abstract

The bioeconomy can play a critical role in helping countries to find alternative sustainable sources of products and energy. Countries with diverse terrestrial and marine ecosystems will see diverging feedstock opportunities to develop these new value chains. Understanding the sources, composition, and regional availability of these biomass feedstocks is an essential first step in developing new sustainable bio-based value chains. In this paper, an assessment and analysis of regional biomass availability was conducted in the diverse regions of Andalusia and Ireland using a bioresource mapping model. The model provides regional stakeholders with a first glance at the regional opportunities with regards to feedstock availability and an estimate of the transportation costs associated with moving the feedstock to a different modelled location/region for the envisioned biorefinery plant. The analysis found that there were more than 30 million tonnes of (wet weight) biomass arisings from Ireland (84,000 km 2 ) with only around 4.8 million tonnes from the Andalusian region (87,000 km 2 ). The study found that Cork in Ireland stood out as the main contributor of biomass feedstock in the Irish region, with animal manures making the largest contribution. Meanwhile, the areas of Almería, Jaén, and Córdoba were the main contributors of biomass in the Andalusia region, with olive residues identified as the most abundant biomass resource. This analysis also found that, while considerable feedstock divergence existed within the regions, the mapping model could act as an effective tool for collecting and interpreting the regional data on a transnational basis.

Suggested Citation

  • Jennifer Attard & Helena McMahon & Pat Doody & Johan Belfrage & Catriona Clark & Judit Anda Ugarte & Maria Natividad Pérez-Camacho & María del Sol Cuenca Martín & Antonio José Giráldez Morales & James, 2020. "Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4595-:d:367348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2015. "A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS)," European Journal of Operational Research, Elsevier, vol. 245(1), pages 247-264.
    2. Leduc, S. & Starfelt, F. & Dotzauer, E. & Kindermann, G. & McCallum, I. & Obersteiner, M. & Lundgren, J., 2010. "Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden," Energy, Elsevier, vol. 35(6), pages 2709-2716.
    3. Manzanares, P. & Ballesteros, I. & Negro, M.J. & González, A. & Oliva, J.M. & Ballesteros, M., 2020. "Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context," Renewable Energy, Elsevier, vol. 145(C), pages 1235-1245.
    4. Rosúa, J.M. & Pasadas, M., 2012. "Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4190-4195.
    5. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    6. Katarzyna Anna Koryś & Agnieszka Ewa Latawiec & Katarzyna Grotkiewicz & Maciej Kuboń, 2019. "The Review of Biomass Potential for Agricultural Biogas Production in Poland," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uchechukwu Stella Ezealigo & Blessing Nonye Ezealigo & Francis Kemausuor & Luke Ekem Kweku Achenie & Azikiwe Peter Onwualu, 2021. "Biomass Valorization to Bioenergy: Assessment of Biomass Residues’ Availability and Bioenergy Potential in Nigeria," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    2. Franz Grossauer & Gernot Stoeglehner, 2023. "Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda," Land, MDPI, vol. 12(1), pages 1-22, January.
    3. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability, Springer, vol. 2(1), pages 231-279, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    2. Van Meerbeek, Koenraad & Ottoy, Sam & De Meyer, Annelies & Van Schaeybroeck, Tom & Van Orshoven, Jos & Muys, Bart & Hermy, Martin, 2015. "The bioenergy potential of conservation areas and roadsides for biogas in an urbanized region," Applied Energy, Elsevier, vol. 154(C), pages 742-751.
    3. Mohd Idris, Muhammad Nurariffudin & Leduc, Sylvain & Yowargana, Ping & Hashim, Haslenda & Kraxner, Florian, 2021. "Spatio-temporal assessment of the impact of intensive palm oil-based bioenergy deployment on cross-sectoral energy decarbonization," Applied Energy, Elsevier, vol. 285(C).
    4. Tatiana M. Pinho & João Paulo Coelho & Germano Veiga & A. Paulo Moreira & José Boaventura-Cunha, 2017. "A Multilayer Model Predictive Control Methodology Applied to a Biomass Supply Chain Operational Level," Complexity, Hindawi, vol. 2017, pages 1-10, July.
    5. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    6. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    7. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    8. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    9. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    10. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    11. Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue & Thorin, Eva & Dotzauer, Erik, 2012. "The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study," Applied Energy, Elsevier, vol. 92(C), pages 791-799.
    12. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Zhang, Wenjie & Liu, Shan & Li, Nianping & Xie, Hui & Li, Xuanqi, 2015. "Development forecast and technology roadmap analysis of renewable energy in buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 395-402.
    14. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    15. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    16. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    17. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    18. Gómez-de la Cruz, Francisco J. & Casanova-Peláez, Pedro J. & Palomar-Carnicero, José M. & Cruz-Peragón, Fernando, 2014. "Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction," Energy, Elsevier, vol. 75(C), pages 146-152.
    19. Kilcline, Kevin & Dhubháin, Áine Ní & Heanue, Kevin & O'Donoghue, Cathal & Ryan, Mary, 2021. "Addressing the challenge of wood mobilisation through a systemic innovation lens: The Irish forest sector innovation system," Forest Policy and Economics, Elsevier, vol. 128(C).
    20. Kinab, Elias & Khoury, Georges, 2015. "Management of olive solid waste in Lebanon: From mill to stove," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 209-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4595-:d:367348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.